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RATIONALE:  Biofilm formation is an intrinsic defensive strategy that bacteria utilize to survive 

environmental stresses such as the host immune system and antibiotic therapy. There is strong evidence to 

support that biofilm formation poses numerous challenges in the management of periprosthetic joint infection 

(PJI) and contributes to the overall treatment failure of current standard therapy. The phenotypic and genotypic 

characteristics of biofilm are dependent on numerous factors, including the type of organism, the host 

environment, and the infected surface. Therefore, to improve treatment outcomes for PJI, novel modalities that 

target different components of the biofilm have been developed. To answer this question, we reviewed 

preclinical studies that tested therapeutic agents or interventions, against bacterial biofilm on a multitude of 

surfaces. We excluded studies that tested prophylactic approaches used to inhibit biofilm formation such as 

surface-altering treatments, and agents targeting planktonic bacteria. Therapeutic agents targeting biofilm were 

grouped into six main categories: 1) Antimicrobials, 2) Chemical disruptors, 3) Physical and energy-based 

disruptors, 4) Bacteriophages, 5) Enzymatic disruptors, and 6) Antibodies.  

 

METHODS 

A comprehensive literature search was conducted across four databases (i.e., Medline, Embase, Web of Science 

and SINAHL) designed to identify studies focusing on agents targeting biofilms in vitro or in vivo, which 

identified 1125 unique papers.  From this screening process, 197 studies were selected for full-text review. 

Ultimately, 96 studies met the inclusion criteria for systematic review and were organized into 6 general classes 

of agents effective against biofilm in pre-clinical models.  

 

RESULTS 

1. Antimicrobials 

Antimicrobials are agents that directly kill bacteria or other microorganisms. Antibiotics are the most common 

antimicrobial agent, followed by peptides, nanoparticles, and immunomodulators. We identified 33 relevant 

articles that tested antimicrobial agents in pre-clinical models.  Among these studies, 25 addressed S. aureus 

and other coagulase-negative species. The majority focused on the MBEC (Minimum Biofilm Eradication 

Concentration), which is the lowest concentration of an antimicrobial agent required to completely eradicate a 

biofilm, and direct evaluation of biofilm integrity.
1
 MBEC is often significantly higher than the Minimum 

Inhibitory Concentration (MIC), which applies to planktonic (free-floating) bacteria, and generally exceeds 

clinically achievable concentrations unless delivered locally with a carrier such as calcium phosphate. Common 

agents such as Vancomycin and Tobramycin penetrate biofilm at high doses (100-750 µg/mL) but may not be 



 

effective against embedded bacteria.
2,3

 Other drugs, such as Moxifloxacin showed greater efficacy against S. 

aureus than Vancomycin.
4,5

 Rifampin was extensively tested and found to be more effective against biofilm-

based infections when used in combination with other drugs such as linezolid, moxifloxacin, and doxycycline, 

but could inhibit Gentamycin.
4–8

  

 

Some antimicrobials were found to have enhanced efficacy against biofilm. Rifabutin was shown to be superior 

in the reduction of biofilm at lower concentrations, compared to rifampin and rifapentine. Cefiderocol is a 

siderophore-conjugated antibiotic that demonstrated the ability to penetrate bacterial biofilms using bacterial 

iron transport systems.
6
 Other antibiotics were found to be more effective against biofilm when used in 

combination, particularly when including Tedizolid.
9–14

 Several plant-based extracts were significantly more 

effective than Chlorhexidine at removing biofilm from silicone surfaces with minimal soft tissue toxicity.
15

 

Several novel peptides designed to penetrate and destabilize biofilm matrix and disrupt bacterial membranes 

(eg: WLBU2, PLG0206, Camel Peptide, and others) show excellent eradication of biofilms and bacterial 

viability in vitro and are exceedingly promising agents.
16–19

 For example, 8-hydroxyserrulat-14-en-19-oic acid 

(EN4) is a peptide with rapid biofilm reduction, achieving >3 log CFU reductions in S. aureus and S. 

epidermidis within five minutes.
18

 Nanoparticles exhibiting strong antimicrobial activity such as Activated Zinc 

also show promise by disrupting cell membranes.
19

 It should be noted that, like antibiotics, novel agents that 

have shown efficacy against one strain of bacterial biofilm may not be as effective against another strain, and 

further testing may be indicated.  

 

The effectiveness of antimicrobials often depends on their ability to penetrate biofilms, highlighting the need for 

approaches that enhance biofilm disruption. For example, traditional antibiotics have shown increased 

effectiveness when used in combination with enzymatic disruptors such as Exebacase or physical disruption 

methods like ultrasound-assisted drug delivery.
20,21

 

 

2. Chemical Disruptors 

Chemical disruptors are agents that interfere with the structural integrity, signaling, or function of a biofilm 

without necessarily killing microorganisms. Of the 21 articles included, most involved in vitro microtiter 

biofilm models and biofilms on clinically relevant surfaces like metal, plastic, and ceramic. 2 studies 

incorporated in vivo models using titanium K-wires or polyester-thread implants.
22,23

 The most common in vitro 

biofilms included S. aureus, S. epidermidis, and P. aeruginosa. Most chemical disruptors demonstrated 

significant reductions in biofilm biomass and bacterial CFUs achieving 2-4 log reductions, though complete 

eradication was rare. Activated zinc solutions, Bioactive glass, Polyhexanide (PHMB), and Chitosan 

Nanoparticles with Chloroquine & DNase I functionalization were some of the most effective at achieving 

MBEC reductions. Irrigation solutions such as XPerience and PHMB displayed superior antibiofilm activity 

compared to standard antiseptics like povidone-iodine and chlorhexidine, highlighting a shift toward specialized 

biofilm-targeting irrigation solutions.
24,25

  

 

Several chemical agents were tested in isolation against biofilm. Metal-based agents, particularly activated zinc 

and bioactive glass, consistently outperformed conventional antiseptics, demonstrating significant biofilm 

reduction across multiple bacterial species. Activated zinc eradicated 100% of MRSA biofilm and reduced P. 

aeruginosa biofilm by 99.996%, while bioactive glass (BAG-S53P4) achieved up to 50% biomass reduction in 

methicillin-resistant S. epidermidis.
26,27

 Plant-derived chemical biofilm disruptor, such as quercetin and allicin, 

showed promising results, reducing P. aeruginosa biofilm by up to 85%, though variability in efficacy suggests 

a need for further research.
28

 Cell-free supernatants from Enterobacter strains demonstrated antibiofilm effects, 

inhibiting biofilm formation by >65% and disrupting mature biofilm by >85%.
29

 Acetic acid, at clinically 



 

acceptable concentrations (5%), showed a 96.1% reduction in MSSA biofilms within 20 minutes but exceeded 

safety limits at concentrations >10%.
30

 Silver nanoparticles conjugated with DNA aptamers achieved a 63% 

reduction in biofilm biomass, enhancing penetration into the biofilm matrix.
31

 Coraca-Huber et al., 2021 turned 

to Omega-3 fatty acids, and demonstrated eicosatetraenoic acid (EPA) had strong dose-dependent antibiofilm 

activity against S. aureus and S. epidermidis.
32

 On the other hand, docosahexaenoic acid (DHA) was less 

consistent, which suggested that higher EPA concentrations (≥5 mg/L) may have clinical potential for managing 

infections. N-chlorotaurine (NCT) exhibited time- and concentration-dependent biofilm eradication against S. 

aureus, S. epidermidis, and P. aeruginosa, with a 1-log reduction in viable bacteria within 15 minutes.
33

 

 

Synergistic therapies combining biofilm-chemical disrupting agents with antibiotics demonstrated enhanced 

efficacy, particularly with rifampin-based combinations for P. acnes biofilms, and antibiotic-anti-inflammatory 

synergies such as gentamicin with ketorolac.
34,35

 Chitosan-based nanoparticles functionalized with DNase I and 

chloroquine provided a dual-action approach by disrupting extracellular DNA while exerting antimicrobial 

activity.
22

 The combination of isobavachalcone with gentamicin and curcumin enhanced biofilm eradication and 

reduced inflammatory osteolysis in MRSA and MSSA biofilms.
23

 Cis-2-decenoic acid, a quorum-sensing 

inhibitor, potentiated the efficacy of tetracycline, linezolid, and chlorhexidine, suggesting a role for quorum-

sensing disruption in improving biofilm treatment outcomes.
36

 Turner et al., 2022 demonstrated that while 

sodium salicylate reduced MBEC for rifampin twofold (from 1024 to 512 µg/mL), it had little to no effect on 

other antibiotics, making it a limited adjuvant therapy.
37

 

 

However, several studies reported inconsistent outcomes, particularly with N-acetylcysteine, where its efficacy 

in weakening biofilm structures varied by strain and environmental conditions.
38,39

 Berberine, a plant-derived 

bioactive alkaloid, showed mixed results against S. aureus biofilms, indicating its limitations as a stand-alone 

treatment, but potential as an adjunct to antibiotic therapy due to its MIC-lowering abilities against MRSA.
40–42

 

 

While promising, combination therapies also introduce complexity in dosing strategies and potential cytotoxic 

effects, requiring further studies to optimize safety and effectiveness. Additionally, biofilm susceptibility varied 

significantly depending on bacterial strain and biofilm maturity, emphasizing the need for more standardized in 

vivo testing protocols before the commencement of clinical applications. Overall, chemical disruptors offer 

promising solutions for biofilm management, but their clinical applicability remains limited not just by 

variability in efficacy, but also the lack of standardized testing methodologies and validation in more robust in 

vivo models. 

 

3. Physical Disruption & Energy-Based Agents 

Physical disruptors are treatments that aim to physically alter or disrupt biofilms. They are most effective when 

used in conjunction with antimicrobial agents. A total of 23 studies met this criterion.  

Photodynamic treatments were widely studied. In one study, Lasers combined with methylene blue showed 

promise against S. aureus Briggs, 2018) while two studies evaluated RLP068/Cl, a photosensitizing agent, and 

found it to reduce biomass and biofilm cell counts significantly in S. aureus and P. aeruginosa.
43,44

 In another 

study, a single or fractionated dose of red-blue photodynamic therapy coupled to 5-ALA generated reactive 

oxygen species (ROS) disrupted 95% to 99% of biofilm in MRSA cultures.
45

 A photothermic gel substance 

containing amino acids achieved 100% biofilm eradication.
46

 

There were several mechanical approaches with good results. One study assessed pulsed lavage. While pulse 

lavage alone transiently reduced biomass, regrowth occurred within 24 hours. However, when followed with 

antibiotics, the regrowth did not occur, underlying the importance of combining mechanical treatment of the 



 

biofilm with antimicrobial therapy.
47

 Additionally, an atmospheric pressure non-thermal plasma jet resulted in a 

99.99% reduction in biofilm CFUs, with the eventual complete eradication of P. aeruginosa.
48,49

 Elevating 

substrate temperature was also shown to reduce biofilm and biomass.
50

 

Several other physical disruptors were shown to be effective in disrupting the biofilm and thereby enhancing 

antimicrobial efficacy. An injectable hydrogel, “EMgel,” activated by ultrasound, was also found to be effective 

in biofilm disruption.
51

 Magnetic fields, extracorporeal shockwaves (both low and high energy), ultrasound, 

electrical stimulation, acoustic nanodroplets, and non-contact induction heating were also effective in biofilm 

disruption, particularly when combined with other agents, such as beta-defensins, SAAP-148, and 

antimicrobials.
21,50,52–63

 

4. Bacteriophages (phages) 

Phages are a class of viruses capable of specifically infecting and killing bacteria without infecting mammalian 

cells. They operate through mechanisms distinct from antibiotics, exhibiting strict host specificity and the 

ability to disrupt biofilms.
64

 We identified 6 studies that primarily investigated phages. Four were in vitro 

models, one in vivo, and another used both models. 

Over the past decade, there has been an increased interest to explore the therapeutic of phages , especially with 

the rising rate in antibiotic resistance, particularly in pathogens like S. aureus.
64

 Phage therapy was highly 

efficacious across all studies, targeting mainly S. aureus, P. aeruginosa, and E. coli infections particularly when 

paired with antibiotics. The most commonly tested antibiotics in combination with phage were vancomycin, 

rifampin, ciprofloxacin, and gentamicin. 

Two papers investigated single phage activity, one using biomimetic apatite powder targeting S. aureus 

biofilms. Totten et al., 2024, and the other exploring single phage therapy on isolates from PJI cases.
65

 They 

reported up to 100% of biofilm eradication, indicating that phage therapy may be a viable therapeutic option for 

biofilm-associated PJI infections.
65,66

 

 

Four papers investigated phage synergy for enhanced results. Taken in combination, these papers suggest that 

combined phage therapy is superior to monotherapy. They also suggest that phage-derived-lysin, combined with 

vancomycin, is moderately effective against biofilm and that phages combined with multiple antibiotics were 

more effective than single antibiotic regimens. While promising, it is worth noting that the overall efficacy of 

phage treatment against biofilm is not on par with that observed with other agent classes reviewed.
60,67–69

  

 

5. Enzymatic Disruptors 

Enzymatic disruptors are a novel class of agents that target and break down the biofilm matrix. There were 5 

articles from this search that matched this definition. 

 

Enzymes in this category can be plant-based, such as Bromelain which is derived from pineapple stems, or 

phages (Enzybiotics). Bromelain powder combined with mechanical scrubbing can achieve 91% biofilm 

dissolution.
70

 Prior studies have found bromelain to be useful in surgical trauma, thrombophlebitis, debridement 

of wounds, and enhanced absorption of drugs such as antibiotics. 

 

Four papers looked at several enzybiotics finding in some cases an important dose-response curve and in others 

important synergy with antibiotics.
20,71–74

 Exebacase (CF-301) is of particular interest in the literature due to its 

ability to effectively lyse S. aureus biofilms by breaking down peptidoglycan within bacterial cell walls.
20

 



 

DNase is another enzyme that targets specific components of the biofilm matrix, facilitating its breakdown and 

increasing susceptibility to antimicrobials.
22

 

 

6)  Antibodies:   

Passive immunization with antibodies has been used clinically to treat various infectious diseases including 

SARS-CoV-2.
75

  This approach has also been investigated as treatment to eradicate established biofilm.
76

  A 

notable example is the pre-clinical efficacy of a native human monoclonal antibody, TRL1068, against the 

DNABII family: integration host factor (IHF) and histone-like (HU) proteins, which was recently evaluated in a 

phase 1 clinical trial.
77,78

  Antibodies conjugated with photoactivatable compounds and drugs have also been 

demonstrated to have preclinical efficacy against biofilm.
79,80

 

 

 

CONCLUSION 

PJIs present a significant clinical challenge, primarily due to the resilience of biofilms and the limited 

effectiveness of antibiotics in these complex infections (Staats, Li, Sullivan, & Stoodley, 2021). Although 

several agents show preclinical efficacy against biofilms, a multimodal antibiofilm therapeutic strategy is 

required to enhance efficacy. Our review shows that out of the six main categories of antibiofilm agents, the 

antimicrobial group was the most pre-clinically studied. Traditional antibiotics have poor efficacy against 

biofilm when used alone. However, their efficacy in clearing biofilm is enhanced when combined with other 

antibiofilm agents, such as peptides, nanoparticles, enzymes, phages, or energy-based disruptors. Due to the 

heterogeneity in the mechanisms of action of the various antibiofilm agents being studied, as well as the various 

pathogen being treated, it is not possible to determine which group of agents are the most efficacious to be 

translated into clinical studies. In order to address this knowledge gap, further research is necessary to identify 

how each of these groups of agents can be tailored to maximize its therapeutic efficacy in the clinical setting.  

 

Supplementary Legends 

 

Table 1: Classification and Examples of Agents active against Biofilm.  
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