B25: What Are the Best Strategies to Prevent Biofilm Formation and Maturation?

German A Norambuena, Farideh Najafi, Ahmed Ghaithi, Alison Klika, Imre Sallai, Alberto V Carli, Goran Bicanic, Bartolome L Allende.

Response/Recommendation:

The best strategies to prevent biofilm formation and maturation involve reducing bacterial burden around implants and using surface modifications to limit bacterial attachment.

Strength of recommendation: Weak

Delegate Vote:

Rationale:

Biofilms are defined as complex communities of microorganisms residing within an exopolysaccharide matrix that adheres to a surface. Biofilm formation is typically classified into three stages; (a) initial attachment (reversible and irreversible), (b) maturation of microcolonies, and (c) dispersion/detachment [1]. Three key factors required for its formation are bacteria load, favorable surface characteristics, and sufficient time for bacterial adhesion and maturation [2, 3].

Preventing biofilm formation and maturation remains a critical challenge in orthopedic surgery, as biofilms frequently lead to implant failure, chronic infection, and need for revision surgeries. Direct prevention strategies involve implant surface modifications designed to inhibit bacterial attachment, while indirect strategies focus on reducing the microbial burden near the implant surface. This systematic review summarizes preclinical evidence from animal studies as well as clinical results, with an emphasis on direct prevention strategies currently available on the market.

Direct prevention strategies

Surfaces can resist bacterial colonization through intrinsic physical or chemical properties, or by incorporating antibacterial molecules that are firmly attached to the surface. These surfaces are known as passive surfaces. The deposition of nanospikes or making surfaces 'super' hydrophobic or hydrophilic are examples of passive efforts to limit bacterial attachment, which are currently in preclinical development [4, 5]. Another example includes covalently bonded antibacterial coatings, which maintain a localized antibacterial effect while minimizing the risk of antimicrobial resistance and cytotoxicity. *In-vivo* evidence of the efficacy of passive coatings was demonstrated by Stewart et al. [6], who reported significant biofilm inhibition using a vancomycin-modified titanium surface in a sheep model of fracture-related infection.

Surfaces that lack intrinsic antibacterial properties but instead release antimicrobial agents to prevent biofilm formation and eliminate planktonic organisms are known as active surfaces. Silver-coated implants have an active surface that releases silver ions and have been available on the European market for over a decade. Qin et al. [7] reported that silver nanoparticles immobilized on titanium surfaces significantly reduce the risk of implant-associated infections by inhibiting biofilm formation and bacterial adhesion. Despite this, clinical results have been inconsistent. Wafa et al. [8] found that silver-coated megaprostheses achieved an 85% (17/20) infection control success rate compared to 57.1% (12/21) for untreated implants (p=0.05). In contrast, Parry et al. [9] reported no significant difference in infection-free survival between silver-coated (n=89) and

non-silver-coated (n=305) prostheses in high-risk patients with primary extremity bone tumors (86.8% and 91.8% at 5 years, respectively, p=0.193). Additionally, 30 patients with silver ion doped calcium phosphate implants exhibited significantly lower infection rate compared to similar patients groups in the literature (p = 0.001) [10]. A meta-analysis by Fiore et al. [11] highlighted mixed results, reporting infection rates of 9.2% (44/445) and 13.7% (25/183) for primary and revision surgeries using silver-coated implants, compared to 11.2% (57/507) and 29.2% (47/161) for untreated implants, respectively. Interestingly, the effectiveness varied among the three types of silver coatings studied, suggesting that not all silver-coated implants perform equally. Alternative metals such as copper and zinc have shown promise as antibacterial coatings, though their clinical application remains limited due to concerns about potential cytotoxicity [12-14].

Iodine-coated implants have demonstrated efficacy to reduce bacterial viability compared to untreated implants *in vivo* [15]. Clinically, Shirai et al. [16] reported a reinfection rate of 4.2% and a survival rate of 91% for iodine-coated implants after 5.6 years of follow-up, with no thyroid abnormalities or allergies detected. A more recent study from the same group investigated iodine-coated implants in 477 compromised patients, reporting an overall infection rate of 3.7% after a mean follow-up of 41 months [17].

Numerous antibiotic-releasing coatings have been developed, such as hydrogels loaded with vancomycin, gentamicin, or amikacin, which provide prolonged, high local antibiotic concentrations at the implant interface to reduce biofilm formation [18-20]. Sol-gel films, glyceryl monostearate-based implants, fibrin gels, and high specialized steel implants have demonstrated the ability to release antimicrobials within peri-implant spaces for sufficient durations to clear polymicrobial biofilms [21-26].

Recent advances, although not yet in clinical use, include enzyme-responsive hydrogels that release antibiotics upon bacterial detection and temperature-responsive polymer brushes [27, 28]. Additionally, coatings based on antimicrobials such as peptides, amino acids, and plant-derived natural products have gained attention due to their strong action against biofilm formation in animal models [24, 29-31]. Clinically, gentamycin coatings have been evaluated in high-risk infection setting. Franz et al. [32] demonstrated that gentamicin-coated tibial nails in patients with open fractures significantly reduced fracture site infections. A systematic review by De Meo et al. [33] further supported these findings, concluding that gentamicin-coated tibial nails are the preferred choice for reducing infection risks in open fractures or high-risk patients.

Indirect prevention strategies

Indirect strategies focus on reducing bacterial load near the implant surface through meticulous surgical techniques, antiseptic irrigation solutions, antibacterial powders and beads, antibiotic hydrogel carriers, antibiotic-loaded cements, and intravenous prophylaxis. For example, vancomycin powder completely prevented biofilm formation in a rabbit model [34]. Antibiotic-loaded PMMA cement has been shown to reduce revision rates following total knee arthroplasty [35]. However, Carli et al. [36] found that while vancomycin-loaded PMMA did not significantly reduce bacterial burden, it effectively prevented biofilm formation on implants in an animal periprosthetic joint infection (PJI) revision model.

Various antiseptic solution show significant promise in preventing biofilm-related complications [37]. Additionally, antibiotic solution such as allicin in combination with vancomycin significantly reduced *Staphylococcus epidermidis* biofilms in a rabbit model [38].

Hydrogel carriers for antibiotic represent another effective strategy. In a multicenter, randomized prospective study involving 380 primary and revision arthroplasty patients found that

antibiotic-loaded hydrogel (ALH) coatings reduced early surgical site infections to 0.6% in the treatment group compared to 6% in the control group (p = 0.003) [39]. Similarly, a retrospective observational study comparing 17 patients undergoing aseptic revision hip surgery treated with ALH against matched controls found no PJIs in the ALH group versus six cases in the control group (p < 0.0001), with a minimum follow-up of six months [40]. Another clinical trial involving 256 patients randomized to receive fast-resorbable ALH coatings after internal osteosynthesis reported no surgical site infections in the treated group compared to 4.6% in the control group (p < 0.03) [41].

Innovative molecular approaches, though still in the preclinical phase, continue to evolve. Endolysins and advanced peptides targeting bacterial virulence factors have shown potential in dismantling established biofilms [42, 43]. Quorum-sensing inhibitors delivered via beads or solutions can disrupt *Staphylococcus* biofilm assembly [44]. Additionally, monoclonal antibodies targeting *Staphylococcal* toxins or surface proteins also represent a promising avenue for future research [45].

Conclusion:

Minimizing microbial burden during surgery and the immediate postoperative period is arguably the most critical strategy to prevent biofilm formation and maturation. If microorganisms reach the implant surface, active preventions strategies such as silver-coated implants have demonstrated some success in reducing periprosthetic joint infections in oncological applications. Similarly, iodine-based coatings, hydrogel carriers, and gentamicin-coated titanium rods -already available on the market- offer promising approaches for biofilm and PJI prevention.

References

- 1. Khatoon, Z., et al., *Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention.* Heliyon, 2018. **4**(12): p. e01067.
- 2. Koseki, H., et al., Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study. PLoS One, 2014. **9**(10): p. e107588.
- 3. Wi, Y.M. and R. Patel, *Understanding Biofilms and Novel Approaches to the Diagnosis, Prevention, and Treatment of Medical Device-Associated Infections.* Infect Dis Clin North Am, 2018. **32**(4): p. 915-929.
- 4. Zhang, X., et al., Synergistic antibacterial activity of physical-chemical multi-mechanism by TiO(2) nanorod arrays for safe biofilm eradication on implant. Bioact Mater, 2021. **6**(1): p. 12-25.
- 5. Gao, Q., et al., Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. Biomater Sci, 2019. **8**(1): p. 278-289.
- 6. Stewart, S., et al., Vancomycin-modified implant surface inhibits biofilm formation and supports bone-healing in an infected osteotomy model in sheep: a proof-of-concept study. J Bone Joint Surg Am, 2012. **94**(15): p. 1406-15.
- 7. Qin, H., et al., *In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium.* Biomaterials, 2014. **35**(33): p. 9114-25.
- 8. Wafa, H., et al., *Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case-control study.* Bone Joint J, 2015. **97-B**(2): p. 252-7.

- 9. Parry, M.C., et al., Silver-coated (Agluna(R)) tumour prostheses can be a protective factor against infection in high risk failure patients. Eur J Surg Oncol, 2019. **45**(4): p. 704-710.
- 10. Köse, N., et al., *THE USE OF ORTHOPAEDIC IMPLANTS WITH SILVER ION-DOPED CERAMIC COATING IN THE PREVENTION OF IMPLANT-RELATED INFECTIONS*. Orthopaedic Proceedings, 2020. **102-B**(SUPP_11): p. 74-74.
- 11. Fiore, M., et al., Silver-coated megaprosthesis in prevention and treatment of periprosthetic infections: a systematic review and meta-analysis about efficacy and toxicity in primary and revision surgery. Eur J Orthop Surg Traumatol, 2021. **31**(2): p. 201-220.
- 12. Prinz, C., et al., *Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model.* J Biomater Appl, 2017. **32**(2): p. 139-149.
- 13. Zhuang, Y., et al., *Antibacterial effect of a copper-containing titanium alloy against implant-associated infection induced by methicillin-resistant Staphylococcus aureus*. Acta Biomater, 2021. **119**: p. 472-484.
- 14. Qu, X., et al., Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation. Acta Biomater, 2020. **117**: p. 400-417.
- 15. Inoue, D., et al., *Inhibition of biofilm formation on iodine-supported titanium implants*. Int Orthop, 2017. **41**(6): p. 1093-1099.
- 16. Shirai, T., et al., A retrospective study of antibacterial iodine-coated implants for postoperative infection. Medicine (Baltimore), 2019. **98**(45): p. e17932.
- 17. Shirai, T., et al., *Iodine-supported implants in prevention and treatment of surgical site infections for compromised hosts: a prospective study.* J Orthop Surg Res, 2023. **18**(1): p. 388.
- 18. Harris, M.A., et al., *Phosphatidylcholine Coatings Deliver Local Antimicrobials and Reduce Infection in a Murine Model: A Preliminary Study*. Clin Orthop Relat Res, 2017. **475**(7): p. 1847-1853.
- 19. Ashbaugh, A.G., et al., *Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo*. Proc Natl Acad Sci U S A, 2016. **113**(45): p. E6919-E6928.
- 20. Diefenbeck, M., et al., Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats. Biomaterials, 2016. **101**: p. 156-64.
- 21. Boles, L.R., et al., Local Delivery of Amikacin and Vancomycin from Chitosan Sponges Prevent Polymicrobial Implant-Associated Biofilm. Mil Med, 2018. **183**(suppl_1): p. 459-465.
- 22. Chilukuri, D.M. and J.C. Shah, *Local delivery of vancomycin for the prophylaxis of prosthetic device-related infections.* Pharm Res, 2005. **22**(4): p. 563-72.
- 23. Aguilera-Correa, J.J., et al., A New Antibiotic-Loaded Sol-Gel Can Prevent Bacterial Prosthetic Joint Infection: From in vitro Studies to an in vivo Model. Front Microbiol, 2019. **10**: p. 2935.
- 24. Qu, H., et al., *Percutaneous external fixator pins with bactericidal micron-thin sol-gel films for the prevention of pin tract infection.* Biomaterials, 2015. **62**: p. 95-105.
- 25. Gimeno, M., et al., *Porous orthopedic steel implant as an antibiotic eluting device:* prevention of post-surgical infection on an ovine model. Int J Pharm, 2013. **452**(1-2): p. 166-72.

- 26. Doan, V.N., T.T. Truong, and H.L.B. Tran, *Development of local vancomycin delivery system from fibrin gel to prevent Staphylococcus aureus biofilms graft infection.* J Biosci, 2020. **45**.
- 27. Chen, F., et al., *Triggered Release of Ampicillin from Metallic Implant Coatings for Combating Periprosthetic Infections*. ACS Appl Mater Interfaces, 2024. **16**(19): p. 24421-24430.
- 28. Choi, S., et al., Application of Multi-Layered Temperature-Responsive Polymer Brushes Coating on Titanium Surface to Inhibit Biofilm Associated Infection in Orthopedic Surgery. Polymers (Basel), 2022. **15**(1).
- 29. de Breij, A., et al., *Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145*. J Control Release, 2016. **222**: p. 1-8.
- 30. Harmata, A.J., et al., *D-amino acid inhibits biofilm but not new bone formation in an ovine model.* Clin Orthop Relat Res, 2015. **473**(12): p. 3951-61.
- 31. Mo, F., et al., *In vitro and in vivo effects of the combination of myricetin and miconazole nitrate incorporated to thermosensitive hydrogels, on C. albicans biofilms.* Phytomedicine, 2020. **71**: p. 153223.
- 32. Franz, D., et al., *Use of antibiotic coated intramedullary nails in open tibia fractures: A European medical resource use and cost-effectiveness analysis.* Injury, 2021. **52**(7): p. 1951-1958.
- 33. De Meo, D., et al., Gentamicin-Coated Tibia Nail in Fractures and Nonunion to Reduce Fracture-Related Infections: A Systematic Review. Molecules, 2020. **25**(22).
- 34. Hovis, J.P., et al., *Intraoperative Vancomycin Powder Reduces Staphylococcus aureus Surgical Site Infections and Biofilm Formation on Fixation Implants in a Rabbit Model.* J Orthop Trauma, 2018. **32**(5): p. 263-268.
- 35. Jameson, S.S., et al., *Antibiotic-loaded bone cement is associated with a lower risk of revision following primary cemented total knee arthroplasty: an analysis of 731,214 cases using National Joint Registry data.* Bone Joint J, 2019. **101-B**(11): p. 1331-1347.
- 36. Carli, A.V., et al., Vancomycin-Loaded Polymethylmethacrylate Spacers Fail to Eradicate Periprosthetic Joint Infection in a Clinically Representative Mouse Model. J Bone Joint Surg Am, 2018. **100**(11): p. e76.
- 37. Caid, M., J. Valk, and J. Danoff, *Irrigation Solutions in Total Joint Arthroplasty*. Spartan Med Res J, 2022. **7**(2): p. 37502.
- 38. Zhai, H., et al., Lavage with allicin in combination with vancomycin inhibits biofilm formation by Staphylococcus epidermidis in a rabbit model of prosthetic joint infection. PLoS One, 2014. **9**(7): p. e102760.
- 39. Romano, C.L., et al., *Does an Antibiotic-Loaded Hydrogel Coating Reduce Early Post-Surgical Infection After Joint Arthroplasty?* J Bone Jt Infect, 2016. 1: p. 34-41.
- 40. De Meo, D., et al., Antibiotic-Loaded Hydrogel Coating to Reduce Early Postsurgical Infections in Aseptic Hip Revision Surgery: A Retrospective, Matched Case-Control Study. Microorganisms, 2020. **8**(4).
- 41. Malizos, K., et al., Fast-resorbable antibiotic-loaded hydrogel coating to reduce postsurgical infection after internal osteosynthesis: a multicenter randomized controlled trial. J Orthop Traumatol, 2017. **18**(2): p. 159-169.
- 42. Fursov, M.V., et al., *Antibiofilm Activity of a Broad-Range Recombinant Endolysin LysECD7: In Vitro and In Vivo Study.* Viruses, 2020. **12**(5).

- 43. Raeder, S.B., et al., *Novel Peptides Targeting the beta-Clamp Rapidly Kill Planktonic and Biofilm Staphylococcus epidermidis Both in vitro and in vivo*. Front Microbiol, 2021. **12**: p. 631557.
- 44. Balaban, N., et al., *Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP*. Antimicrob Agents Chemother, 2007. **51**(6): p. 2226-9.
- 45. Mao, Y., et al., Multimechanistic Monoclonal Antibody Combination Targeting Key Staphylococcus aureus Virulence Determinants in a Rabbit Model of Prosthetic Joint Infection. Antimicrob Agents Chemother, 2021. **65**(7): p. e0183220.