G8: Should prophylactic antibiotics be altered for patients who are carriers of methicillinresistant *Staphylococcus aureus* (MRSA)?

Tianyi David Luo, Piret Mitt, Christopher E Pelt, Keita Morikane, Bingyun Li, Robert Molloy, Hitoshi Honda, Randi Silibovsky, Panayiotis Megaloikonmos, Amir Human Hoveidaei

Response/Recommendation:

Yes. Patients who are carriers of methicillin-resistant *Staphylococcus aureus* (MRSA) should receive an additional antibiotic with activity against MRSA in addition to cephalosporin.

Level of evidence: Limited

Delegate Vote:

Rationale:

Perioperative antibiotic prophylaxis is critical for reducing the risk of periprosthetic joint infections (PJI) and surgical site infections (SSI) in orthopaedic and spinal surgeries (1). Studies have explored the efficacy of combining vancomycin and cefazolin, particularly for preventing methicillin-resistant *Staphylococcus aureus* (MRSA) infections (2). While the addition of vancomycin to cefazolin was not superior to cefazolin and placebo in the prevention of surgical site infection in a population with low prevalence of MRSA colonization (3), the optimal antibiotic regimen that balances efficacy and potential adverse effects in MRSA carriers remains an active area of research.

This systematic review began with an initial screening of 482 article titles and abstracts from PubMed and Web of Science, resulting in 117 relevant studies. After full-text evaluation, 52 studies met the inclusion criteria, with 14 studies selected for data extraction and detailed analysis (4-17) (**Table 1**). There was no study that definitively assessed outcomes in confirmed MRSA carrier patients. Our meta-analysis found that cefazolin alone significantly reduces MRSA infections compared to non-cefazolin regimens (P < 0.001) (**Figure 1**). The combination of vancomycin and cefazolin provides superior protection, significantly lowering MRSA infection rates compared to cefazolin alone (P = 0.002) (**Figure 2**).

Three studies were not included in our meta-analysis:

- 1. **Takeuchi et al.** (15): Compared topical vancomycin versus ampicillin in patients undergoing thoracic and/or lumbar fusions. Infection with MRSA occurred in one patient (out of 114) in the ampicillin group, with no MRSA cases reported in the vancomycin group.
- 2. **Choi et al.** (16): Compared sulfamethoxazole/trimethoprim plus cefazolin or vancomycin (84 patients) versus cefazolin or vancomycin alone (511 patients) in spinal surgery. MRSA infection occurred in one patient in each group.
- 3. **Kanellakopoulou et al.** (17): Compared teicoplanin (278 patients) versus second-generation cephalosporins, β-lactam/β-lactamase inhibitors, or ciprofloxacin (338 patients) in total hip/knee arthroplasty. MRSA infection was identified in one patient in the teicoplanin group and two in the comparison group (**Table 1**).

Conclusion:

The combination of vancomycin and cefazolin appears to offer superior protection against MRSA infections in orthopaedic and spinal surgeries compared to cefazolin alone. It is

worth noting that most included studies were retrospective cohort studies, and only a few randomized controlled trials were conducted. Moreover, since there are major variations in the patient population, interventions, types of orthopaedic procedures, and outcomes among included studies, it is hard to conclude that adding anti-MRSA agents or switching to anti-MRSA agents would be better than a traditional regimen of surgical antimicrobial prophylaxis (i.e., cefazolin) for MRSA carriers undergoing orthopaedic procedures. The potential risks of dual prophylaxis, such as increased antibiotic resistance and nephrotoxicity, must also be carefully considered. Given the absence of studies specifically addressing confirmed MRSA carriers, further high-quality research is essential to develop definitive guidelines for antibiotic prophylaxis in this patient population.

	Non-C	efa	Cef	a		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Buchalter 2022	2	1066	8	10484	70.6%	2.46 [0.52, 11.61]	
Marigi 2024	1	298	1	6879	4.0%	23.16 [1.45, 371.14]	
Ortiz 2022	4	882	3	9028	25.5%	13.71 [3.06, 61.33]	
Total (95% CI)		2246		26391	100.0%	6.14 [2.42, 15.57]	•
Total events	7		12				
Heterogeneity: Chi ^z = Test for overall effect:		,		= 40%			0.01 0.1 10 100 Lower in Non-Cefa Lower in Cefa

Figure 1. MRSA infections in non-cefazolin vs Cefazolin

	Vanco +	Cefa	Cefa	a		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Bains 2014	1	1437	2	1470	6.7%	0.51 [0.05, 5.64]	
Burger 2018	1	914	4	957	13.2%	0.26 [0.03, 2.34]	•
Garofalo 2023	0	420	4	405	15.4%	0.11 [0.01, 1.98]	-
Heller 2015	0	341	5	342	18.5%	0.09 [0.00, 1.63]	
Hofmann 2017	1	538	6	496	21.0%	0.15 [0.02, 1.27]	
Saveli 2013	1	65	1	65	3.3%	1.00 [0.06, 16.34]	
Sewik 2012	1	1328	4	500	19.6%	0.09 [0.01, 0.84]	
Tafish 2017	2	81	2	375	2.3%	4.72 [0.66, 34.02]	-
Total (95% CI)		5124		4610	100.0%	0.30 [0.14, 0.64]	•
Total events	7		28				
Heterogeneity: Chi ² =	: 11.06, df :	7 (P=	0.14); l² =	: 37%			
Test for overall effect	: Z= 3.12 (I	P = 0.00	12)				0.01 0.1 1 10 100 Lower in Vanco+Cefa Lower in Cefa

Figure 2. MRSA spell out infections in Vancomycin plus Cefazolin versus Cefazolin **Table 1.** Included Studies

Autho r	Yea r	Coun try	Type of Proced ure	CASE	Control	Sample size		Mean age (SD)		Gender(M%)		MRSA	
						C as e	Con trol	Cas e	Cont	Ca se	Co ntr ol	Case	Control
Heller	2015	USA	posterio r instrum ented spinal arthrode sis	Vanco mycin + Cefazo lin	Cefazoli n	3 4 2	341	55. 3 (19. 1)	49.1 (20.9	45.	49.	0	5(1.5)
Burge r	2018	USA	THA,T KA	Vanco mycin + Cefazo lin	Cefazoli n	9 1 4	957	59. 10 (11. 55)	60.3 1(11. 49)	43. 04	41.	1	4
Kanell akopo ulou	2008	Gree ce	THA, TKA	Teicopl anin	second- generati on cephalos porin	2 7 8	338	67. 40(10. 74)	70.6 9(8.0 1)	25. 17	21. 79	1	2

					D								
					B lactams/								
					B lactamas								
					e inhibitor sciprofl oxacin								
Ortiz	2014	USA	THA	vanco mycin or clinda mycin	Cefazoli n	8 8 2	902			29 4(3 3)	40 71 (4 5.1)	2	8
Choi	2021	USA	Spinal surgery	sulfam ethoxa zole/tri methop rim + cefazol in or vanco mycin	cefazoli n or vancom ycin	8 4	511	62	60.8	44. 5	43.	1	1
Sewic k	2012	USA	ТЈА	Vanco mycin + Cefazo lin	Cefazoli n	1 3 2 8	500	60. 6 (12. 5)	59.6 (12.0)	36	44	1	4
Bains	2024	USA	ТЈА	Vanco mycin + Cefazo lin	Cefazoli n	1, 4 3 7	1,47	62	62	44	46	1	2
Takeu chi	2018	Japan	thoracic and/or lumbar fusions	Vanco mycin	Ampicil lin	1 1 6	114	66(14)	68(1 4)	52. 58	38. 59	0	1
Saveli	2013	USA	Open Fracture Surgery	Vanco mycin + Cefazo lin	Cefazoli n	6 5	65	40(16)	42(1 8)	78	66	1	1
Hofma nn	2017	USA	THA, TKA	Vanco mycin + Cefazo lin	Cefazoli n	5 3 8	496	61. 5(1 1.6)	60.6(12.3)	43. 75	39. 77	1	6

Marigi	2024	USA	TSA	Vanco mycin	Cefazoli n	2 9 8	687 9	69. 5(1 1.4)	68.6 (11.5	41. 6	49. 2	1	1
Tafish	2017	USA	Spinal surgery	Vanco mycin	Non vancom ycin	8	375	50	45	58	66. 4	2	2
Garof alo	2023	Italy	TSA	Vanco mycin + Cefazo lin	Cefazoli n	4 2 0	405	73(7)	71(7)	31.	28.	0	4
Bucha lter	2022	USA	TKA	clinda mycin and/or vanco mycin	Cefazoli n	1, 0 6 6	104 84	65. 14 (10. 2)	65.6 (9.6)	22. 8	32. 8	4	3

References

- 1. Longo UG, Candela V, Facchinetti G, Marchetti A, Dsoke S, Mazzella C, et al. Antibiotic prophylaxis in primary and revision shoulder replacement: a systematic review. BMC Musculoskelet Disord. 2020;21(1):292.
- 2. Peel T, Astbury S, Cheng AC, Paterson D, Buising K, Spelman T, et al. Multicentre randomised double-blind placebo controlled trial of combination vancomycin and cefazolin surgical antibiotic prophylaxis: the Australian surgical antibiotic prophylaxis (ASAP) trial. BMJ Open. 2019;9(11):e033718.
- 3. Peel TN, Astbury S, Cheng AC, Paterson DL, Buising KL, Spelman T, et al. Trial of Vancomycin and Cefazolin as Surgical Prophylaxis in Arthroplasty. N Engl J Med. 2023;389(16):1488-98.
- 4. Bains SS, Dubin JA, Hameed D, Chen Z, Moore MC, Shrestha A, et al. Addition of vancomycin to cefazolin is often unnecessary for preoperative antibiotic prophylaxis during total joint arthroplasties. Arthroplasty. 2024;6(1):20.
- 5. Burger JR, Hansen BJ, Leary EV, Aggarwal A, Keeney JA. Dual-Agent Antibiotic Prophylaxis Using a Single Preoperative Vancomycin Dose Effectively Reduces Prosthetic Joint Infection Rates With Minimal Renal Toxicity Risk. The Journal of Arthroplasty. 2018;33(7):S213-S8.
- 6. Garofalo R, Fontanarosa A, De Giorgi S, Lassandro N, De Crescenzo A. Vancomycin powder embedded in collagen sponge decreases the rate of prosthetic shoulder infection. J Shoulder Elbow Surg. 2023;32(8):1638-44.
- 7. Heller A, McIff TE, Lai SM, Burton DC. Intrawound Vancomycin Powder Decreases Staphylococcal Surgical Site Infections After Posterior Instrumented Spinal Arthrodesis. J Spinal Disord Tech. 2015;28(10):E584-9.
- 8. Hofmann K, Hayden B, Kong Q, Pevear M, Cassidy C, Smith E. Triple prophylaxis for the prevention of surgical site infections in total joint arthroplasty. Current Orthopaedic Practice. 2016;28:1.
- 9. Saveli CC, Morgan SJ, Belknap RW, Ross E, Stahel PF, Chaus GW, et al. Prophylactic antibiotics in open fractures: a pilot randomized clinical safety study. J Orthop Trauma. 2013;27(10):552-7.
- 10. Sewick A, Makani A, Wu C, O'Donnell J, Baldwin KD, Lee GC. Does dual antibiotic prophylaxis better prevent surgical site infections in total joint arthroplasty? Clin Orthop Relat Res. 2012;470(10):2702-7.
- 11. Tafish RT, Alkhaldi AF, Bourghli A, Althunian TA. Effectiveness of topical vancomycin in the prevention of spinal surgical site infections: a retrospective cohort study. Antimicrob Resist Infect Control. 2021;10(1):136.
- 12. Marigi IM, Yu K, Nieboer MJ, Marigi EM, Sperling JW, Sanchez-Sotelo J, et al. After primary shoulder arthroplasty appropriate vancomycin antibiotic prophylaxis does not lead to increased infectious complications when compared to cefazolin. J Shoulder Elbow Surg. 2024;33(12):2612-8.
- 13. Buchalter DB, Nduaguba A, Teo GM, Kugelman D, Aggarwal VK, Long WJ. Cefazolin remains the linchpin for preventing acute periprosthetic joint infection following primary total knee arthroplasty. Bone Jt Open. 2022;3(1):35-41.
- 14. Ortiz D, 3rd, Teo GM, Lygrisse K, Aggarwal VK, Long WJ. Increased Rate of Early Periprosthetic Joint Infection in Total Hip Arthroplasty With the Use of Alternatives to Cefazolin Despite Additional Gram-Negative Coverage. Arthroplast Today. 2022;14:183-8.

- 15. Takeuchi M, Wakao N, Kamiya M, Hirasawa A, Murotani K, Takayasu M. A double-blind randomized controlled trial of the local application of vancomycin versus ampicillin powder into the operative field for thoracic and/or lumbar fusions. J Neurosurg Spine. 2018;29(5):553-9.
- 16. Choi JH, Duong HA, Williams S, Lee J, Oh M, Rosen C, et al. The efficacy of bactrim in reducing surgical site infections after spine surgery. N Am Spine Soc J. 2022;9:100095.
- 17. Kanellakopoulou K, Papadopoulos A, Varvaroussis D, Varvaroussis A, Giamarellos-Bourboulis EJ, Pagonas A, et al. Efficacy of teicoplanin for the prevention of surgical site infections after total hip or knee arthroplasty: a prospective, open-label study. Int J Antimicrob Agents. 2009;33(5):437-40.