HK58: Does the type of infective organism influence the success rate of Debridement, Antibiotics and Implant Retention (DAIR)?

Álvaro Auñón, Enrique Gómez-Barrena, Claudia Arias, Ignacio Sancho, Jay D Shah, Sumon Nandi, Rene Mihalič, Ibrahim Tuncay

Response/Recommendation:

Yes. Based on retrospective studies, the type of infective organism appears to influence the success rate of DAIR.

Level of Evidence: Moderate

Delegate Vote:

Rationale:

There are a number of factors that influence the outcome of DAIR in patients with acute PJI (REF). In order to answer the question posed above, we conducted a comprehensive review of the literature. Using MeSH terms developed by librarians, we searched for the designated PICCO terms into two databases(Pubmed and EMBASE). 453 studies were initially identified as appropriate. After screening, 112 studies met the inclusion criteria for full review and data extraction. All of the studies reviewed were retrospective in nature and attempted to investigate the influence of organisms type on the success of DAIR.

Several studies have demonstrated that infections caused by Staphylococcus aureus are associated with a significantly increased risk of treatment failure (1–6). Reported odds ratios (OR) for failure vary between 3.27 (p=0.02)(7) up to 7.1 (p=0.0012) (8). When comparing methicillin-resistant S. aureus (MRSA) with methicillin-sensitive S. aureus (MSSA), Lora et al.(9) analyzed a series of 345 patients. Although they found no overall prognostic differences between MRSA- and MSSA-related periprosthetic joint infections (PJI), there was a higher incidence of treatment failure in MRSA-PJI during therapy (HR 2.34). Scheper et al(10) conducted a systematic review and meta-analysis of 4,380 patients and reported that the overall success rate of S. aureus treatment after debridement, antibiotics, and implant retention (DAIR) was 62% (based on 2922 patients across 54 studies). When comparing MRSA and MSSA outcomes, no significant difference was found (MRSA: 58%, MSSA: 60%; p=0.459). This trend remained consistent when outcomes were analyzed by joint type. For late acute infections, S. aureus was identified as a significant independent variable for treatment failure (11) with an OR of 1.8 (p=0.03)(12). Treatment success rates for late acute PJIs were significantly lower (34%) compared to 75% for other PJIs (p < 0.001)(13). In another study by Nandi et al.(14) on 115 patients, infections with S. aureus were associated with a much higher risk of reoperation due to recurrence in total knee arthroplasty (TKA) infections (OR

24.9; p=0.0004). Conversely, Huotari et al.(15) studied 85 acute *S. aureus* PJIs treated with DAIR, reporting that the original implant was retained in 80% of patients (89.3% in late acute PJIs and 75.4% in early acute PJIs). Suppressive antibiotic therapy, which was not considered a failure in their study, was administered to 26.5% of patients and was more commonly used in late acute PJIs (46.2% vs. 17.5% for early acute PJIs; p=0.006).

After *S. aureus*, enterococcal PJIs are also associated with poor outcomes(1,16). The largest study on enterococcal PJIs, conducted by Tornero et al.(17), analyzed 94 patients treated with debridement, antibiotics, and implant retention (DAIR). Their findings was that *Enterococcus* infections were challenging to treat as they frequently occurred in the context of polymicrobial infections in hosts that had comorbidities.

Gram-negative infections have also been identified as predictors of failure after DAIR. Zhu et al.(3) reported an increased risk of failure for patients with gran negative PJI (OR 1.85, p = 0.027). Similarly, Rodríguez-Pardo et al.(18) documented a DAIR success rate of only 41% in gram-negative, ciprofloxacin-resistant PJIs. Papadopoulos et al.(19) further highlighted that DAIR is associated with significantly higher failure rates in multidrug-resistant (MDR) and extensively drug-resistant (XDR) gram-negative bacterial (GNB) PJIs compared to implant removal (OR 3.57, p < 0.001).

In a systematic review, González et al.(20) observed one-year and two-year free of treatment failure rates after DAIR for acute infections: 65% and 67% for hip PJIs, and 67% and 72% for knee PJIs, respectively. Among these cases, *Proteus spp.* infections were identified as significant risk factors for treatment failure in acute PJIs.

Streptococcal infections appear to be associated with a poorer prognosis also. Lora et al.(21), in a study of 462 patients, reported a failure rate of 42.1%. While no specific streptococcal species was significantly linked to higher overall failure rates, a non-significant trend suggested a better prognosis for S. pneumoniae. These findings are consistent with those of Mahieu et al.(22), who observed a poor prognosis for patients treated with DAIR: 50% experienced relapse, whereas all patients treated with prosthesis exchange did well with no (adjusted p < 0.001). Additionally, S. agalactiae was identified as an independent factor for treatment failure. Supporting this, Fiaux et al. reported that DAIR was associated with a higher risk of failure, particularly in patients with infected total knee arthroplasty(23). In contrast, Lam et al.(24) reported a notably high success rate of 91% for patients treated with the DAIR strategy as the final surgical procedure. Polymicrobial infections appear to be associated with a worse prognosis, as evidenced by data from Bernaus et al.(25) (p = 0.024) and Chen et al.(26) (p < 0.01), both of which highlight significantly higher failure rates in these cases compared to monomicrobial infections. Lastly, fungal infections have been associated with poor outcomes. In a recent study, Dinh et al.(27) identified the use of DAIR (OR, 1.946 P = .012), and infections caused by C. parapsilosis as significant risk factors for treatment failure. Similarly, González et al.(28), in a systematic review of fungal PJIs, concluded that two-stage revision is more effective than DAIR in preventing recurrence. Specifically, two-stage revision showed a protective effect against recurrence in hip and knee PJIs (OR 0.20, p = 0.016) and knee PJIs alone (OR 0.18, p = 0.04).

The 2018 International Consensus Meeting (ICM) on fungal infections recommended that DAIR should be offered selectively to immunocompromised patients due to its relatively high failure rates. DAIR is best reserved for truly acute PJIs after the initial arthroplasty, especially in otherwise healthy patients (type A).

In conclusion and based on our research, it appears that a number of factors influence the outcome of DAIR in patients with acute PJI. One of those factors appears to be the type of infective organism. The presence of resistance, such as methicillin resistance, and infection with fungal organisms and polymicrobial infections are among the challenging infections to treat and carry a relatively high failure rate after DAIR.

References

- 1. Argenson JN, Arndt M, Babis G, Battenberg A, Budhiparama N, Catani F, et al. Hip and Knee Section, Treatment, Debridement and Retention of Implant: Proceedings of International Consensus on Orthopedic Infections. The Journal of Arthroplasty. 2019 Feb;34(2):S399–419.
- 2. Walkay S, Wallace DT, Balasubramaniam VSC, Maheshwari R, Changulani M, Sarungi M. Outcomes of Debridement, Antibiotics and Implant Retention (DAIR) for Periprosthetic Joint Infection in a High-Volume Arthroplasty Centre. JOIO. 2022 Aug;56(8):1449–56.
- 3. Zhu MF, Kim K, Cavadino A, Coleman B, Munro JT, Young SW. Success Rates of Debridement, Antibiotics, and Implant Retention in 230 Infected Total Knee Arthroplasties: Implications for Classification of Periprosthetic Joint Infection. The Journal of Arthroplasty. 2021 Jan;36(1):305-310.e1.
- 4. Rudelli BA, Giglio PN, De Carvalho VC, Pécora JR, Gurgel HMC, Gobbi RG, et al. Bacteria drug resistance profile affects knee and hip periprosthetic joint infection outcome with debridement, antibiotics and implant retention. BMC Musculoskelet Disord. 2020 Dec;21(1):574.
- 5. Toh RX, Yeo ZN, Liow MHL, Yeo SJ, Lo NN, Chen JY. Debridement, Antibiotics, and Implant Retention in Periprosthetic Joint Infection: What Predicts Success or Failure? The Journal of Arthroplasty. 2021 Oct;36(10):3562–9.
- 6. Davis JS, Metcalf S, Clark B, Robinson JO, Huggan P, Luey C, et al. Predictors of Treatment Success After Periprosthetic Joint Infection: 24-Month Follow up From a Multicenter Prospective Observational Cohort Study of 653 Patients. Open Forum Infectious Diseases. 2022

- 7. Bernaus M, Auñón-Rubio Á, Monfort-Mira M, Arteagoitia-Colino I, Martínez-Ros J, Castellanos J, et al. Risk Factors of DAIR Failure and Validation of the KLIC Score: A Multicenter Study of Four Hundred Fifty-Five Patients. Surgical Infections. 2022 Apr 1;23(3):280–7.
- 8. Swenson RD, Butterfield JA, Irwin TJ, Zurlo JJ, Davis CM. Preoperative Anemia Is Associated With Failure of Open Debridement Polyethylene Exchange in Acute and Acute Hematogenous Prosthetic Joint Infection. The Journal of Arthroplasty. 2018 Jun;33(6):1855–60.
- 9. Lora-Tamayo J, Murillo O, Iribarren JA, Soriano A, Sánchez-Somolinos M, Baraia-Etxaburu JM, Rico A, Palomino J, Rodríguez-Pardo D, Horcajada JP, Benito N, Bahamonde A, Granados A, del Toro MD, Cobo J, Riera M, Ramos A, Jover-Sáenz A, Ariza J; REIPI Group for the Study of Prosthetic Infection. A large multicenter study of methicillin-susceptible and methicillin-resistant *Staphylococcus aureus* prosthetic joint infections managed with implant retention. *Clin Infect Dis.* 2013 Jan;56(2):182-94. doi: 10.1093/cid/cis746. Epub 2012 Aug 31. PMID: 22942204.

.

- 10. Scheper H, Gerritsen LM, Pijls BG, Van Asten SA, Visser LG, De Boer MGJ. Outcome of Debridement, Antibiotics, and Implant Retention for Staphylococcal Hip and Knee Prosthetic Joint Infections, Focused on Rifampicin Use: A Systematic Review and Meta-Analysis. Open Forum Infectious Diseases. 2021 Jul 1;8(7):ofab298.
- 11. Wouthuyzen-Bakker M, Sebillotte M, Lomas J, Taylor A, Palomares EB, Murillo O, et al. Clinical outcome and risk factors for failure in late acute prosthetic joint infections treated with debridement and implant retention. Journal of Infection. 2019 Jan;78(1):40–7.
- 12. Wouthuyzen-Bakker M, Sebillotte M, Lomas J, Kendrick B, Palomares EB, Murillo O, et al. Timing of implant-removal in late acute periprosthetic joint infection: A multicenter observational study. Journal of Infection. 2019 Sep;79(3):199–205.
- 13. Wouthuyzen-Bakker M, Sebillotte M, Huotari K, Escudero Sánchez R, Benavent E, Parvizi J, et al. Lower Success Rate of Débridement and Implant Retention in Late Acute versus Early Acute Periprosthetic Joint Infection Caused by Staphylococcus spp. Results from a Matched Cohort Study. Clin Orthop Relat Res. 2020 Jun;478(6):1348–55.
- 14. Nandi S, Doub JB, De Palma BJ, Potter GR, Stronach BM, Stambough JB, et al. Suppressive Antibiotic Therapy After Debridement, Antibiotics, and Implant Retention is Well-

Tolerated Without Inducing Resistance: A Multicenter Study. The Journal of Arthroplasty. 2024 Mar;39(3):795–800.

- 15. Huotari K, Vuorinen M, Vasara A. Debridement, antimicrobials, and implant retention in the treatment of late acute and early acute *Staphylococcus aureus* prosthetic joint infections. Infectious Diseases. 2023 Aug 3;55(8):525–32.
- 16. Jacobs AME, Valkering LJJ, Bénard M, Meis JF, Goosen JHM. Evaluation One Year after DAIR Treatment in 91 Suspected Early Prosthetic Joint Infections in Primary Knee and Hip Arthroplasty. J Bone Joint Infect. 2019 Oct 15;4(5):238–44.
- 17. Tornero E, Senneville E, Euba G, Petersdorf S, Rodriguez-Pardo D, Lakatos B, Ferrari MC, Pilares M, Bahamonde A, Trebse R, Benito N, Sorli L, del Toro MD, Baraiaetxaburu JM, Ramos A, Riera M, Jover-Sáenz A, Palomino J, Ariza J, Soriano A; European Society Group of Infections on Artificial Implants (ESGIAI). Characteristics of prosthetic joint infections due to Enterococcus sp. and predictors of failure: a multi-national study. Clin Microbiol Infect. 2014 Nov;20(11):1219-24. doi: 10.1111/1469-0691.12721. PMID: 24943469.
- 18. Rodríguez-Pardo D, Pigrau C, Lora-Tamayo J, Soriano A, Del Toro MD, Cobo J, et al. Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clinical Microbiology and Infection. 2014 Nov;20(11):O911–9.
- 19. Papadopoulos A, Ribera A, Mavrogenis AF, Rodriguez-Pardo D, Bonnet E, Salles MJ, et al. Multidrug-resistant and extensively drug-resistant Gram-negative prosthetic joint infections: Role of surgery and impact of colistin administration. International Journal of Antimicrobial Agents. 2019 Mar;53(3):294–301.
- 20. Gonzalez MR, Gonzalez J, Patel RV, Werenski JO, Lizcano JD, Gram-negative PJI Collaborative Group, et al. Microbiology, Treatment, and Postoperative Outcomes of Gram-Negative Prosthetic Joint Infections—A Systematic Review of the Literature. J Am Acad Orthop Surg [Internet]. 2024 Sep 5 [cited 2025 Jan 28]; Available from: https://journals.lww.com/10.5435/JAAOS-D-23-01203
- 21. Lora-Tamayo J, Senneville É, Ribera A, Bernard L, Dupon M, Zeller V, et al. The Not-So-Good Prognosis of Streptococcal Periprosthetic Joint Infection Managed by Implant Retention: The Results of a Large Multicenter Study. Clinical Infectious Diseases. 2017 Jun 15;64(12):1742–52.
- 22. Mahieu R, Dubée V, Seegers V, Lemarié C, Ansart S, Bernard L, et al. The prognosis of

streptococcal prosthetic bone and joint infections depends on surgical management—A multicenter retrospective study. International Journal of Infectious Diseases. 2019 Aug;85:175–81.

- 23. Fiaux E, Titecat M, Robineau O, Lora-Tamayo J, El Samad Y, Etienne M, Frebourg N, Blondiaux N, Brunschweiler B, Dujardin F, Beltrand E, Loiez C, Cattoir V, Canarelli JP, Hulet C, Valette M, Nguyen S, Caron F, Migaud H, Senneville E; G4 bone and joint infection study group (G4BJIS). Outcome of patients with streptococcal prosthetic joint infections with special reference to rifampicin combinations. BMC Infect Dis. 2016 Oct 13;16(1):568. doi: 10.1186/s12879-016-1889-0. PMID: 27737642; PMCID: PMC5064929.
- 24. Lam A, Rasmussen M, Thompson O. Successful outcome for patients with streptococcal prosthetic joint infections a retrospective population-based study. Infectious Diseases. 2018 Aug 3;50(8):593–600.
- 25. Bernaus M, Auñón-Rubio Á, Monfort-Mira M, Arteagoitia-Colino I, Martínez-Ros J, Castellanos J, et al. Risk Factors of DAIR Failure and Validation of the KLIC Score: A Multicenter Study of Four Hundred Fifty-Five Patients. Surgical Infections. 2022 Apr 1;23(3):280–7.
- 26. Chen W, Klemt C, Smith EJ, Tirumala V, Xiong L, Kwon YM. Outcomes and Risk Factors Associated With Failures of Debridement, Antibiotics, and Implant Retention in Patients With Acute Hematogenous Periprosthetic Joint Infection. J Am Acad Orthop Surg [Internet]. 2021 Feb 22 [cited 2025 Jan 28]; Available from: https://journals.lww.com/10.5435/JAAOS-D-20-00939
- 27. Dinh A, McNally M, D'Anglejan E, Mamona Kilu C, Lourtet J, Ho R, et al. Prosthetic Joint Infections due to *Candida* Species: A Multicenter International Study. Clinical Infectious Diseases. 2024 Aug 27;ciae395.
- 28. Gonzalez MR, Bedi ADS, Karczewski D, Lozano-Calderon SA. Treatment and Outcomes of Fungal Prosthetic Joint Infections: A Systematic Review of 225 Cases. The Journal of Arthroplasty. 2023 Nov;38(11):2464-2471.e1.
- 29. Belden K, Cao L, Chen J, Deng T, Fu J, Guan H, et al. Hip and Knee Section, Fungal Periprosthetic Joint Infection, Diagnosis and Treatment: Proceedings of International Consensus on Orthopedic Infections. The Journal of Arthroplasty. 2019 Feb;34(2):S387–91.