HK80: How Soon After Treatment of Patients With Periprosthetic Joint Infection Can

**Success Be Declared?** 

Slullitel PA, Piuzzi NS, Manning L, Karachalios T, Rienzi D, Russo A, Olivetto

R, Solano A, Buttaro MA.

**Response/Recommendation:** 

Failure after surgical management of patients with periprosthetic joint infection can

occur anytime. For assessing the success of surgical treatment, we recommend a minimum

follow-up period of five years. For the purpose of comparative efficacy trials or evaluation of

novel technologies for regulatory approval, we recommend a minimum of one-year follow-up.

**Delegate Vote:** 

Level of Evidence: Moderate

**Rationale:** 

The definition of success after treatment of prosthetic joint infection (PJI) depends on

multiple factors and is irrespective of treatment strategy (one-stage exchange, two-stage

exchange, or debridement, antibiotics and implant retention [DAIR]). Success has been defined

in several forms (Musculoskeletal Infection Society Outcome Reporting Tool [MSIS-ORT],

Delphi-based consensus definition, microbiological success, implant success, and surgical

success) including the combination of normal laboratory and clinical evidence of infection

control following treatment, and/or the absence of septic revision surgery (with or without

implant revision/removal), or infection-related death or unplanned outcome.[1–3] It has been

shown that success rates vary dramatically depending on the definition used to evaluate

outcome.[2] Although external validations and agreements on what tool is best to report

success after treatment of PJI are still necessary, an issue that has been barely considered in the

definition of success is time. Diaz-Ledezma et al reported that 71% of the participants in a

consensus meeting agreed that 2 years was an acceptable time period after definitive surgery

for PJI when considering short-term results.[1] In this study, follow-up durations of 2, 5, and

10 years were classified as short, mid, and long-term, respectively. Tan et al reported that

1

getting a lengthy follow-up in this patient population is very difficult, with 355/570 patients having two-year follow-up, 166/570 reaching five-year follow-up, and only 27/570 patients having ten year follow-up.[2] In this sense, the follow-up time required to define success remains unknown.

Therefore, to answer the posed question, we performed a systematic review of the literature on the treatment outcomes of DAIR, one-stage, and two-stage exchange treatment strategies with specific focus on time to failure. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a systematic search of the online bibliographic databases MEDLINE, Embase and PubMed from inception through November 2024 to identify studies reporting on survival analysis (Kaplan-Meier, cumulative incidence, Cox-regression or similar analyses) with ≥2 years of follow-up after treatment of acute and/or chronic PJI. Exclusion criteria consisted of studies reporting outcomes without time-to-event analyses, editorials, commentaries, case reports, reviews, technique articles without patient data and articles not written in English language. Two of the authors independently screened the title and abstract of an initial number of 7746 articles to apply the selection criteria. Disagreements were solved by consensus after reading the full-text. We reviewed the full-text of 93 articles and finally included 57 articles for analysis.

There were 12 articles reporting on septic events that continued to appear after the first 2 years of follow-up for all types of PJI treatment strategies.[4–15] In two different studies, Xu *et al* showed no substantial improvement in the success rates of PJI treated in a 20-year period,[15] highlighting that given the difficulty with obtaining proper follow-up, a one-year follow-up was sufficient for an accurate reporting of treatment failure.[14] In the latter study, although Kaplan-Meier curves had an abrupt drop in the initial months and plateaued after 1.09 years (irrespective of treatment type), failures continued to appear even after 5 years after treatment, especially following DAIR-surgery.[14] In a retrospective cohort study of 108 polymicrobial PJIs, Tan *et al* reported infection-free survival rates of 52.2% (95% confidence interval [CI] 42.1-62.3) at the 2-year follow-up, 49.3% (95%CI 39-59.6) at the 5-year follow-up, and 46.8% (95%CI 35.9-57.7) at the 10-year follow-up.[12] Similarly, Cochran et al described a retrospective cohort of 16,622 total knee arthroplasty-patients, reporting that patients undergoing DAIR had higher risk of failure when compared to one- and two-stage strategies (p<0.001), with failure rates of 28.2% at 1 year, 34% at 2

years, 41.7% at 5 years, and 43.2% at 6 years after treatment.[4] On the other hand, the risks of reinfection were 24.6% and 19% at 1 year and 38.3% and 29.1% at 6 years for one- and two-stage revisions, respectively.[4] In other words, survival rates continued to decrease in all treatment types during the first five/six postoperative years. In all these studies, risk factors for failure included polymicrobial infections, gram-negative bacteria, Streptococcal and Enterococcal infections, and non-biofilm-active antibiotic treatment, all of them irrelevant to time to failure.[6–9,11,12]

Seven studies focused specifically on the mid- to long-term survival rates after one-stage exchange.[16–22] In a study of 87 chronic PJIs treated with one-stage exchange with antibiotic-impregnated allograft, Dersch and Winkler reported an infection-free survival of 93.9% (95%CI 88.8–99.1) at 1 year, 89.9% (95%CI 83.2–96.6) at 2 years and 81.5% (95%CI 72.1–90.9) at 5 years.[16] In a similar study of 84 cases who underwent single-stage revision total knee arthroplasty, the Kaplan-Meier infection-free survival was 97.6% at one year (95%CI 90.8-99.4), 91.1% at five years (95%CI 81.8-95.6), and 88.3% at 12 years (95%CI 76.6-94.3).[20] Likewise, Slullitel *et al* analyzed 88 one-stage hip revisions and reported a cumulative incidence of septic failure of 8% (95%CI 3.5-15) at one year, 13.8% (95%CI 7.6-22) at two years, and 19.7% (95%CI 12-28.6) at five and ten years of follow-up.[22] Only Ohlmeier *et al* showed that survival rates stayed stable after the first two postoperative years in 101 patients with infected rotating-hinge knee prostheses, with a survival rate of 90% (95%CI 83-97) both at 2 and 6 years. Overall, these studies showed that survival curves had most infection relapses occurring within the first five postoperative years, with some additional septic failures occurring between the sixth and tenth year of follow-up.[16–22]

Twenty-seven articles analyzed the survival rates after two-stage revision surgery.[2,23–48] In two different studies analyzing the long-term results of two-stage revisions, Petis *et al* reported a cumulative incidence reinfection of 10% at 1 year, 14% at 5 years, and 15% at 10 and 15 years in chronic hip PJIs; and a cumulative incidence of reinfection of 4% at 1 year, 14% at 5 years, 16% at 10 years, and 17% at 15 years in chronic knee PJIs.[37,38] Correspondingly, in a retrospective cohort of 96 chronic hip PJIs, Slullitel *et al* reported a cumulative incidence of 14% (95%CI 8-22) at one year, 18% (95%CI 11-27) at two years, 22% (95%CI 14-31) at five years, and 23% (95%CI 15-33) at ten years, highlighting that if there were no recurrent infections within the first five years after a reimplantation, the chances of having a reinfection thereafter were remote.[44] In another

study of 97 joints treated with two-stage exchange, Garvin *et al* reported that seven out of twelve failures occurred at a late follow-up (>5 years after reimplantation), with an estimated 10-year cumulative incidence of reinfection of 14% (95%CI, 7-23).[27] Thus, the authors highlighted that late PJI may recur more than 5 years after reimplantation and therefore patients should be counseled about the importance of ongoing follow-up.[27] In general, all of the included studies on two-stage exchanges showed survival curves with relapses occurring mostly within the first five postoperative years.[2,23–48]

Eleven articles focused primarily on the survival rates of irrigation and debridement procedures for acute PJIs.[49-59] In two similar studies, Grammatopoulos et al performed a survival analysis of periprosthetic hip infections treated with DAIR, showing five- and tenyear implant survivals of 85% (95%CI 78-92) and 77% (95%CI 68-86), and 89% (95%CI 82-96) and 78% (95% CI 88-98), respectively. [52,53] In a registry study of 5406 acute PJIs, it was shown that the cumulative incidences of developing an infection-related event were 48% (95%CI 42-54) at 8 years after a DAIR following a total knee arthroplasty, and 42% (95%CI 37-46) at 4 years following a total hip replacement. [50] Additionally, Weston et al. analyzed the results of DAIR with chronic antibiotic suppression for infected knee arthroplasties, and reported a cumulative incidence of recurrent infection (with death as a competing risk) of 13% at 90 days, 18% at one year, and 34% at five years.[59] Although some have reported that most septic failures after DAIR occur within the first two years of follow-up,[54,57,58] it seems clear in the literature that DAIR procedures require a longerterm follow-up in order to fully discard an eventual relapse.[49,51,55] This concept is especially applicable for those requiring chronic suppressive antibiotic therapy, in which failure events continue to appear after the fifth year of follow-up.[60]

In conclusion, it seems that a 2-year follow-up is not enough to declare success after treatment of PJI. In fact, one- and two-stage revision surgeries may require at least five years of follow-up, while those undergoing DAIR and in need of chronic suppressive antibiotics might even need longer-term follow-ups. However, for the purpose of comparative efficacy trials or evaluation of novel technologies, especially those requiring regulatory approval, a one-year outcome may be adequate to assess the efficacy and safety of a given technology in the setting of a randomized controlled trial, noting that a thorough power analysis is essential, as multiple failures can occur beyond the one-year mark, reflecting the potential fragility of results.

## References

- [1] Diaz-Ledezma C, Higuera CA, Parvizi J. Success after treatment of periprosthetic joint infection: a Delphi-based international multidisciplinary consensus. Clin Orthop Relat Res 2013;471:2374–82. https://doi.org/10.1007/s11999-013-2866-1.
- [2] Tan TL, Goswami K, Fillingham YA, Shohat N, Rondon AJ, Parvizi J. Defining Treatment Success After 2-Stage Exchange Arthroplasty for Periprosthetic Joint Infection. J Arthroplasty 2018;33:3541–6. https://doi.org/10.1016/j.arth.2018.06.015.
- [3] Borsinger TM, Pierce DA, Hanson TM, Werth PM, Orem AR, Moschetti WE. Is the proportion of patients with "successful" outcomes after two-stage revision for prosthetic joint infection different when applying the Musculoskeletal Infection Society Outcome Reporting Tool compared with the Delphi-based consensus criteria? Clin Orthop Relat Res 2021;479:1589–97. https://doi.org/10.1097/CORR.000000000001654.
- [4] Cochran AR, Ong KL, Lau E, Mont MA, Malkani AL. Risk of reinfection after treatment of infected total knee arthroplasty. J Arthroplasty 2016;31:156–61. https://doi.org/10.1016/j.arth.2016.03.028.
- [5] Ekhtiari S, Gazendam A, Saidahmed A, Petruccelli D, Winemaker MJ, de Beer JD, et al. Risk factors for recurrence of periprosthetic joint infection following operative management: a cohort study with average 5-year follow-up. Ann Jt 2023;8:2. https://doi.org/10.21037/aoj-22-4.
- [6] Gellert M, Hardt S, Köder K, Renz N, Perka C, Trampuz A. Biofilm-active antibiotic treatment improves the outcome of knee periprosthetic joint infection: Results from a 6-year prospective cohort study. Int J Antimicrob Agents 2020;55:105904. https://doi.org/10.1016/j.ijantimicag.2020.105904.
- [7] Karczewski D, Scholz J, Hipfl C, Akgün D, Gonzalez MR, Hardt S. Gram negative periprosthetic hip infection: nearly 25% same pathogen infection persistence at a mean of 2 years. Arch Orthop Trauma Surg 2024;144:5053–9. https://doi.org/10.1007/s00402-023-05104-5.
- [8] Kheir MM, Tan TL, Higuera C, George J, Della Valle CJ, Shen M, et al. Periprosthetic joint infections caused by enterococci have poor outcomes. J Arthroplasty 2017;32:933–47. https://doi.org/10.1016/j.arth.2016.09.017.
- [9] Kherabi Y, Zeller V, Kerroumi Y, Meyssonnier V, Heym B, Lidove O, et al. Streptococcal and Staphylococcus aureus prosthetic joint infections: are they really different? BMC Infect Dis 2022;22:555. https://doi.org/10.1186/s12879-022-07532-x.
- [10] Knoll L, Steppacher SD, Furrer H, Thurnheer-Zürcher MC, Renz N. High treatment failure rate in haematogenous compared to non-haematogenous periprosthetic joint infection. Bone Joint J 2023;105-B:1294–302. https://doi.org/10.1302/0301-620X.105B12.BJJ-2023-0454.R1.
- [11] Renz N, Trebse R, Akgün D, Perka C, Trampuz A. Enterococcal periprosthetic joint infection: clinical and microbiological findings from an 8-year retrospective cohort study. BMC Infect Dis 2019;19:1083. https://doi.org/10.1186/s12879-019-4691-y.
- [12] Tan TL, Kheir MM, Tan DD, Parvizi J. Polymicrobial periprosthetic joint infections: Outcome of treatment and identification of risk factors. J Bone Joint Surg Am 2016;98:2082–8. https://doi.org/10.2106/JBJS.15.01450.
- [13] Van Dijk B, Nurmohamed FRHA, Hooning van Duijvenbode JFF, Veltman ES, Rentenaar RJ, Weinans H, et al. A mean 4-year evaluation of infection control rates of hip and knee prosthetic joint infection-related revision arthroplasty: an observational study. Acta Orthop 2022;93:652–7. https://doi.org/10.2340/17453674.2022.3975.
- [14] Xu C, Tan TL, Li WT, Goswami K, Parvizi J. Reporting outcomes of treatment for periprosthetic joint infection of the knee and hip together with a minimum 1-year follow-

- up is reliable. J Arthroplasty 2020;35:1906–11.e5. https://doi.org/10.1016/j.arth.2020.02.017.
- [15] Xu C, Goswami K, Li WT, Tan TL, Yayac M, Wang S-H, et al. Is treatment of periprosthetic joint infection improving over time? J Arthroplasty 2020;35:1696–702.e1. https://doi.org/10.1016/j.arth.2020.01.080.
- [16] Dersch G, Winkler H. Periprosthetic joint infection (PJI)-results of one-stage revision with antibiotic-impregnated cancellous allograft bone-A retrospective cohort study. Antibiotics (Basel) 2022;11:310. https://doi.org/10.3390/antibiotics11030310.
- [17] Liechti EF, Neufeld ME, Soto F, Linke P, Busch S-M, Gehrke T, et al. Favourable outcomes of repeat one-stage exchange for periprosthetic joint infection of the hip. Bone Joint J 2022;104-B:27–33. https://doi.org/10.1302/0301-620X.104B1.BJJ-2021-0970.R1.
- [18] Ohlmeier M, Alrustom F, Citak M, Salber J, Gehrke T, Frings J. What is the mid-term survivorship of infected rotating-hinge implants treated with one-stage-exchange? Clin Orthop Relat Res 2021;479:2714–22. https://doi.org/10.1097/CORR.000000000001868.
- [19] Pioger C, Marmor S, Bouché P-A, Kerroumi Y, Lhotellier L, Graff W, et al. One-stage exchange strategy with extensive debridement for chronic periprosthetic joint infection following total knee arthroplasty is associated with a low relapse rate in non-selected patients: a prospective single-center analysis. Orthop Traumatol Surg Res 2024:104019. https://doi.org/10.1016/j.otsr.2024.104019.
- [20] Razii N, Clutton JM, Kakar R, Morgan-Jones R. Single-stage revision for the infected total knee arthroplasty: the Cardiff experience. Bone Jt Open 2021;2:305–13. https://doi.org/10.1302/2633-1462.25.BJO-2020-0185.R1.
- [21] Russo A, Camacho Uribe A, Abuljadail S, Bokhari A, Gehrke T, Citak M. Excellent survival rate of cemented modular stems in one-stage revision for periprosthetic hip infections with massive femoral bone loss: A retrospective single-center analysis of 150 cases. J Arthroplasty 2024;39:1577–82. https://doi.org/10.1016/j.arth.2023.12.006.
- [22] Slullitel PA, Oñativia JI, Zanotti G, Comba F, Piccaluga F, Buttaro MA. One-stage exchange should be avoided in periprosthetic joint infection cases with massive femoral bone loss or with history of any failed revision to treat periprosthetic joint infection. Bone Joint J 2021;103-B:1247–53. https://doi.org/10.1302/0301-620X.103B7.BJJ-2020-2155.R1.
- [23] Ahmad SS, Orlik L, Ahmad SJS, Albers CE, Siebenrock KA, Klenke FM. Obesity and smoking predict the results of two-stage exchange in septic revision hip arthroplasty: A cohort study. Orthop Traumatol Surg Res 2019;105:467–71. https://doi.org/10.1016/j.otsr.2019.01.006.
- [24] Brown TS, Fehring KA, Ollivier M, Mabry TM, Hanssen AD, Abdel MP. Repeat two-stage exchange arthroplasty for prosthetic hip re-infection. Bone Joint J 2018;100-B:1157–61. https://doi.org/10.1302/0301-620X.100B9.BJJ-2018-0470.R1.
- [25] Chalmers BP, Mabry TM, Abdel MP, Berry DJ, Hanssen AD, Perry KI. Two-stage revision total hip arthroplasty with a specific articulating antibiotic spacer design: Reliable periprosthetic joint infection eradication and functional improvement. J Arthroplasty 2018;33:3746–53. https://doi.org/10.1016/j.arth.2018.08.016.
- [26] Chen S-Y, Hu C-C, Chen C-C, Chang Y-H, Hsieh P-H. Two-stage revision arthroplasty for periprosthetic hip infection: Mean follow-up of ten years. Biomed Res Int 2015;2015:345475. https://doi.org/10.1155/2015/345475.
- [27] Garvin KL, Miller RE, Gilbert TM, White AM, Lyden ER. Late reinfection may recur more than 5 years after reimplantation of THA and TKA: Analysis of pathogen factors. Clin Orthop Relat Res 2018;476:345–52.

- https://doi.org/10.1007/s11999.0000000000000050.
- [28] George J, Miller EM, Curtis GL, Klika AK, Barsoum WK, Mont MA, et al. Success of two-stage reimplantation in patients requiring an interim spacer exchange. J Arthroplasty 2018;33:S228–32. https://doi.org/10.1016/j.arth.2018.03.038.
- [29] Haleem AA, Berry DJ, Hanssen AD. Mid-term to long-term followup of two-stage reimplantation for infected total knee arthroplasty. Clin Orthop Relat Res 2004:35–9. https://doi.org/10.1097/01.blo.0000147713.64235.73.
- [30] Janssen DMC, Geurts JAP, Jütten LMC, Walenkamp GHIM. 2-stage revision of 120 deep infected hip and knee prostheses using gentamicin-PMMA beads. Acta Orthop 2016;87:324–32. https://doi.org/10.3109/17453674.2016.1142305.
- [31] Jhan S-W, Lu Y-D, Lee MS, Lee C-H, Wang J-W, Kuo F-C. The risk factors of failed reimplantation arthroplasty for periprosthetic hip infection. BMC Musculoskelet Disord 2017;18:255. https://doi.org/10.1186/s12891-017-1622-1.
- [32] Kildow BJ, Springer BD, Brown TS, Lyden ER, Fehring TK, Garvin KL. Long term results of two-stage revision for chronic periprosthetic knee infection: A multicenter study. J Arthroplasty 2022;37:S327–32. https://doi.org/10.1016/j.arth.2022.01.029.
- [33] Kildow BJ, Springer BD, Brown TS, Lyden E, Fehring TK, Garvin KL. Long term results of two-stage revision for chronic periprosthetic hip infection: A multicenter study. J Clin Med 2022;11:1657. https://doi.org/10.3390/jcm11061657.
- [34] Kuo F-C, Goswami K, Shohat N, Blevins K, Rondon AJ, Parvizi J. Two-stage exchange arthroplasty is a favorable treatment option upon diagnosis of a fungal periprosthetic joint infection. J Arthroplasty 2018;33:3555–60. https://doi.org/10.1016/j.arth.2018.07.024.
- [35] Lunz A, Geisbüsch A, Omlor GW, Horsch A, Renkawitz T, Lehner B. Differences in success rate of two-stage revision for periprosthetic joint infection of the knee depending on the applied definition. J Arthroplasty 2024. https://doi.org/10.1016/j.arth.2024.09.007.
- [36] Ma C-Y, Lu Y-D, Bell KL, Wang J-W, Ko J-Y, Wang C-J, et al. Predictors of treatment failure after 2-stage reimplantation for infected total knee arthroplasty: A 2- to 10-year follow-up. J Arthroplasty 2018;33:2234–9. https://doi.org/10.1016/j.arth.2018.02.007.
- [37] Petis SM, Abdel MP, Perry KI, Mabry TM, Hanssen AD, Berry DJ. Long-term results of a 2-stage exchange protocol for periprosthetic joint infection following total hip arthroplasty in 164 hips. J Bone Joint Surg Am 2019;101:74–84. https://doi.org/10.2106/JBJS.17.01103.
- [38] Petis SM, Perry KI, Mabry TM, Hanssen AD, Berry DJ, Abdel MP. Two-stage exchange protocol for periprosthetic joint infection following total knee arthroplasty in 245 knees without prior treatment for infection. J Bone Joint Surg Am 2019;101:239–49. https://doi.org/10.2106/JBJS.18.00356.
- [39] Puetzler J, Hofschneider M, Gosheger G, Theil C, Schulze M, Schwarze J, et al. Evaluation of time to reimplantation as a risk factor in two-stage revision with static spacers for periprosthetic knee joint infection. J Orthop Traumatol 2024;25:15. https://doi.org/10.1186/s10195-024-00745-7.
- [40] Rajgopal A, Panda I, Rao A, Dahiya V, Gupta H. Does prior failed debridement compromise the outcome of subsequent two-stage revision done for periprosthetic joint infection following total knee arthroplasty? J Arthroplasty 2018;33:2588–94. https://doi.org/10.1016/j.arth.2018.02.087.
- [41] Russo A, Cavagnaro L, Chiarlone F, Alessio-Mazzola M, Felli L, Burastero G. Predictors of failure of two-stage revision in periprosthetic knee infection: a retrospective cohort study with a minimum two-year follow-up. Arch Orthop Trauma Surg 2022;142:481–90. https://doi.org/10.1007/s00402-021-04265-5.
- [42] Schnetz M, Ewald L, Jakobi T, Klug A, Hoffmann R, Gramlich Y. Use of hinged

- implants for multi-stage revision knee arthroplasty for severe periprosthetic joint infection: Remission rate and outcomes after a minimum follow-up of five years. J Arthroplasty 2025;40:218–26.e1. https://doi.org/10.1016/j.arth.2024.07.035.
- [43] Shichman I, Ward SA, Lu L, Garceau S, Piuzzi NS, Seyler TM, et al. Failed 2-stage revision knee arthroplasty for periprosthetic joint infection—patient characteristics and outcomes. J Arthroplasty 2023;38:2177–82. https://doi.org/10.1016/j.arth.2023.04.063.
- [44] Slullitel PA, Oñativia JI, Cima I, Zanotti G, Comba F, Piccaluga F, et al. Patients with no recurrence of infection five years after two-stage revision hip arthroplasty may be classified as periprosthetic infection "in remission." Bone Joint J 2021;103-B:79–86. https://doi.org/10.1302/0301-620X.103B1.BJJ-2020-0955.R1.
- [45] Steinicke AC, Schwarze J, Gosheger G, Moellenbeck B, Ackmann T, Theil C. Repeat two-stage exchange arthroplasty for recurrent periprosthetic hip or knee infection: what are the chances for success? Arch Orthop Trauma Surg 2023;143:1731–40. https://doi.org/10.1007/s00402-021-04330-z.
- [46] Theil C, Moellenbeck B, Puetzler J, Klingebiel S, Schwarze J, Gosheger G. Two-stage exchange using a total femur spacer in the management of periprosthetic joint infection spacer complications and implant survivorships. J Arthroplasty 2023;38:2171–6. https://doi.org/10.1016/j.arth.2023.04.057.
- [47] Theil C, Schneider KN, Gosheger G, Schmidt-Braekling T, Ackmann T, Dieckmann R, et al. Revision TKA with a distal femoral replacement is at high risk of reinfection after two-stage exchange for periprosthetic knee joint infection. Knee Surg Sports Traumatol Arthrosc 2022;30:899–906. https://doi.org/10.1007/s00167-021-06474-2.
- [48] Vasarhelyi EM, Somerville L, Barton KI, Howard JL, Lanting BA, Naudie DDR, et al. Survivorship and outcomes of 2-stage revision for infected total hip arthroplasty at a mean of 7-year follow-up. J Arthroplasty 2024;39:S243–7. https://doi.org/10.1016/j.arth.2024.05.086.
- [49] Buller LT, Sabry FY, Easton RW, Klika AK, Barsoum WK. The preoperative prediction of success following irrigation and debridement with polyethylene exchange for hip and knee prosthetic joint infections. J Arthroplasty 2012;27:857–64.e1–4. https://doi.org/10.1016/j.arth.2012.01.003.
- [50] De A, Chalmers BP, Springer BD, Browne JA, Lewallen DG, Stambough JB. What is the incidence of and outcomes after debridement, antibiotics, and implant retention (DAIR) for the treatment of periprosthetic joint infections in the AJRR population? Clin Orthop Relat Res 2024;482:2042–51. https://doi.org/10.1097/CORR.000000000003138.
- [51] Eriksson HK, Lazarinis S, Järhult JD, Hailer NP. Early staphylococcal periprosthetic joint infection (PJI) treated with debridement, antibiotics, and implant retention (DAIR): Inferior outcomes in patients with staphylococci resistant to rifampicin. Antibiotics (Basel) 2023;12:1589. https://doi.org/10.3390/antibiotics12111589.
- [52] Grammatopoulos G, Kendrick B, McNally M, Athanasou NA, Atkins B, McLardy-Smith P, et al. Outcome following debridement, antibiotics, and implant retention in hip periprosthetic joint infection—an 18-year experience. J Arthroplasty 2017;32:2248–55. https://doi.org/10.1016/j.arth.2017.02.066.
- [53] Grammatopoulos G, Bolduc M-E, Atkins BL, Kendrick BJL, McLardy-Smith P, Murray DW, et al. Functional outcome of debridement, antibiotics and implant retention in periprosthetic joint infection involving the hip: a case-control study. Bone Joint J 2017;99-B:614–22. https://doi.org/10.1302/0301-620X.99B5.BJJ-2016-0562.R2.
- [54] Rodríguez-Pardo D, Pigrau C, Lora-Tamayo J, Soriano A, del Toro MD, Cobo J, et al. Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin Microbiol Infect

- 2014;20:O911-9. https://doi.org/10.1111/1469-0691.12649.
- [55] Tarity TD, Gkiatas I, Nocon AA, Jones CW, Carli AV, Sculco PK. Irrigation and debridement with implant retention: Does chronicity of symptoms matter? J Arthroplasty 2021;36:3741–9. https://doi.org/10.1016/j.arth.2021.07.018.
- [56] Tubin N, Bourget-Murray J, Bureau A, Morris J, Ann Azad M, Abdelbary H, et al. Lower Rates of Re-Operation Following Partial or Complete Revision Arthroplasty Compared to Debridement, Antibiotics, and Implant Retention for Early Postoperative and Acute Hematogenous Periprosthetic Hip Infection. J Arthroplasty 2024. https://doi.org/10.1016/j.arth.2024.03.054.
- [57] Van Engen M, Hartog TD, Feuchtenberger B, Glass N, Noiseux N. Utility of debridement, antibiotics, and implant retention for acute periprosthetic joint infection in revision total knee arthroplasty. Iowa Orthop J 2024;44:79–84.
- [58] Van Engen MG, Carender CN, Glass NA, Noiseux NO. Outcomes after successful debridement, antibiotic, and implant retention therapy for periprosthetic joint infection in total knee arthroplasty. J Arthroplasty 2024;39:483–9. https://doi.org/10.1016/j.arth.2023.08.015.
- [59] Weston JT, Watts CD, Mabry TM, Hanssen AD, Berry DJ, Abdel MP. Irrigation and debridement with chronic antibiotic suppression for the management of infected total knee arthroplasty: A Contemporary Analysis. Bone Joint J 2018;100-B:1471–6. https://doi.org/10.1302/0301-620X.100B11.BJJ-2018-0515.R1.
- [60] Escudero-Sanchez R, Senneville E, Digumber M, Soriano A, Del Toro MD, Bahamonde A, et al. Suppressive antibiotic therapy in prosthetic joint infections: a multicentre cohort study. Clin Microbiol Infect 2020;26:499–505. https://doi.org/10.1016/j.cmi.2019.09.007.