G16: Does allogeneic blood transfusion increase the risk of postoperative infections in patients undergoing major orthopedic surgery?

Fatih Yıldız, Mustafa Şenyurt, Antony Palmer, Waleed A Al-Saadan, Nathanael Heckmann, Gabriele Tucci, Udo E Anyaehie, Jorge Negrete Corona, Kerem Başarır

Response/Recommendation:

Yes. Allogeneic blood transfusion is associated with an increased risk of postoperative infections, including surgical site infection (SSI)/periprosthetic joint infection (PJI) and systemic infections in patients undergoing major orthopedic surgery.

Level of Evidence: Moderate

Delegate Vote:

Rationale:

The risk of postoperative infections after major orthopedic surgeries is influenced by various factors, including patient-related, surgeon-related and perioperative factors [1]. Allogeneic blood transfusion (ABT) has been associated with potential adverse effects on the recipient's immune system, termed transfusion-related immunomodulation (TRIM) [2]. TRIM is thought to involve both cellular and humoral immune suppression, which could potentially increase the recipient's susceptibility to infection. For this reason, in recent years, patient blood management strategies, such as preoperative optimization of anemia, minimizing intraoperative blood loss, adopting restrictive transfusion triggers.

Conflicting results have been reported regarding the association between ABT and infection [3, 4]. Some studies found an increased risk of infection with ABT [5, 6], while others have not [7–9]. The International Consensus Meeting in 2018 recognized an increased risk of surgical site infection (SSI) associated with ABT compared to no transfusion or autologous transfusion, but concluded that there is no data to support withholding ABT in patients with symptomatic anemia as a strategy to prevent SSIs [10].

The relationship between ABT and infection risk in spinal surgery has been a subject of considerable investigation, yielding mixed results. Many studies have identified ABT as a significant risk factor for postoperative infection after instrumented spinal fusion [11–16]. Woods et al. found a significant association between the volume of ABT and SSI in lumbar spine surgery[17], and Zhang et al. further identified a dose-response relationship with an inflection point of 3 units [18]. These findings underscore the complexity of the relationship between ABT and infection risk in spinal surgery, highlighting the need to consider potential confounding factors such as patient comorbidities and surgical complexity when interpreting the study results [19].

In patients undergoing joint replacement surgery, the relationship between ABT and infection has been extensively studied, with results indicating that ABT may be associated with an

increased risk of infection [6]. A meta-analysis by Kim et al. showed a mean risk ratio for infection after ABT of 1.71 (range, 1.23-2.40) in patients undergoing total hip or knee arthroplasty [20]. Berríos-Torres et al. conducted a meta-analysis for the Centers for Disease Control and Prevention (CDC) guidelines for the prevention of SSI, which examined the association between allogeneic and autologous blood transfusions and the risk of infection [21]. The study found that ABT was associated with increased odds of infection compared to no transfusion (odds ratio [OR]: 1.96, 95% confidence interval [CI] 1.46 to 2.63, p < 0.01, I2 = 0).

For the current systematic review and meta-analysis, we searched Pubmed, Embase and Scopus databases. Thirty-four studies were included after reviewing 497 articles by at least two independent reviewers. Fourteen of those studies investigated the relation between ABT and SSI or periprosthetic joint infection (PJI). The remaining 20 studies have results of the mixed data including SSI/PJI and systemic infections such as urinary tract infection and lower respiratory tract infection. Meta-analysis of those 34 articles showed that ABT is associated with an increased risk of infection compared to non-ABT (risk ratio [RR] = 1.94, 95% confidence interval [CI]: 1.59 to 2.37, P < 0.01, Fig. 1) [2, 4–6, 8, 9, 11–16, 19, 22–42]. Both arthroplasty and spine surgery, showed a trend of increased infection risk with ABT [2, 4–6, 8, 9, 11–16, 19, 22–42]. The analysis was further stratified by subgroups with different transfusion exposure, with one group having received no previous transfusion, and the other having received autologous blood. ABT was associated with a higher risk of infection in both non-transfused and allogenic non-exposed subgroups (Fig. 2) [2, 4–6, 8, 9, 11–16, 19, 22–42]. Subgroup analysis examining isolated SSI/PJI (RR = 2.23, 95% CI: 1.66 to 2.99, P < 0.01) and general infection (RR = 1.83, 95% CI: 1.41 to 2.36, P < 0.01) revealed a consistent association between ABT and increased risk (Fig.3). A separate meta-analysis evaluating the mean difference in the number of allogeneic blood units transfused between patients with and without infection revealed that patients with infection received a significantly higher number of units (mean difference [MD] = 1.02, 95% CI: 0.58-1.45, $I^2 = 64\%$, Fig. 4) [17, 18, 43–45]. This finding further supports the association between ABT and an increased risk of infection.

In conclusion, the present systematic review and meta-analysis demonstrated a significant association between ABT and increased risks of SSI/PJI and systemic infections in the context of major orthopedic surgery. This observation remained consistent across various subgroups and surgical categories, including arthroplasty and spine surgery. Patients with infection received a higher number of allogeneic blood units, suggesting a possible dose response relationship.

References:

- 1. Triantafyllopoulos G, Stundner O, Memtsoudis S, Poultsides LA: Patient, Surgery, and Hospital Related Risk Factors for Surgical Site Infections following Total Hip Arthroplasty. ScientificWorldJournal 2015, 979560 (2015)
- 2. Johnston P, Wynn-Jones H, Chakravarty D, Boyle A, Parker MJ: Is perioperative blood transfusion a risk factor for mortality or infection after hip fracture? J Orthop Trauma 20, 675–9 (2006)
- 3. Schwarzkopf R, Chung C, Park JJ, Walsh M, Spivak JM, Steiger D: Effects of perioperative blood product use on surgical site infection following thoracic and lumbar spinal surgery. Spine (Phila Pa 1976) 35, 340–6 (2010)

- 4. Shander A, Spence RK, Adams D, Shore-Lesserson L, Walawander CA: Timing and incidence of postoperative infections associated with blood transfusion: analysis of 1,489 orthopedic and cardiac surgery patients. Surg Infect (Larchmt) 10, 277–83 (2009)
- 5. Innerhofer P, Klingler A, Klimmer C, Fries D, Nussbaumer W: Risk for postoperative infection after transfusion of white blood cell-filtered allogeneic or autologous blood components in orthopedic patients undergoing primary arthroplasty. Transfusion (Paris) 45, 103–10 (2005)
- 6. Rosencher N, Kerkkamp HEM, Macheras G, Munuera LM, Menichella G, Barton DM, Cremers S, Abraham IL, OSTHEO Investigation: Orthopedic Surgery Transfusion Hemoglobin European Overview (OSTHEO) study: blood management in elective knee and hip arthroplasty in Europe. Transfusion (Paris) 43, 459–69 (2003)
- 7. Park M-S, Moon S-H, Kim H-S, Hahn S-B, Park H-W, Park S-Y, Lee H-M: A comparison of autologous and homologous transfusions in spinal fusion. Yonsei Med J 47, 840–6 (2006)
- 8. Basora M, Pereira A, Soriano A, Martínez-Pastor JC, Sánchez-Etayo G, Tió M, Salazar F: Allogeneic blood transfusion does not increase the risk of wound infection in total knee arthroplasty. Vox Sang 98, 124–9 (2010)
- 9. Vamvakas EC, Moore SB, Cabanela M: Blood transfusion and septic complications after hip replacement surgery. Transfusion (Paris) 35, 150–6 (1995)
- 10. Akonjom M, Battenberg A, Beverland D, Choi J-H, Fillingham Y, Gallagher N, Han SB, Jang WY, Jiranek W, Manrique J, Mihov K, Molloy R, Mont MA, Nandi S, Parvizi J, Peel T, Pulido L, Sarungi M, Sodhi N, Alberdi MT, Olivan RT, Wallace D, Weng X, Wynn-Jones H, Yeo SJ: General Assembly, Prevention, Blood Conservation: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 34, S147–S155 (2019)
- 11. Kim J, Kim T-H: Risk Factors for Postoperative Deep Infection after Instrumented Spinal Fusion Surgeries for Degenerative Spinal Disease: A Nationwide Cohort Study of 194,036 Patients. J Clin Med 11, (2022)
- 12. Shen J, Liang J, Yu H, Qiu G, Xue X, Li Z: Risk factors for delayed infections after spinal fusion and instrumentation in patients with scoliosis. Clinical article. J Neurosurg Spine 21, 648–52 (2014)
- 13. Elsamadicy AA, Adogwa O, Vuong VD, Mehta AI, Vasquez RA, Cheng J, Bagley CA, Karikari IO: Association of Intraoperative Blood Transfusions on Postoperative Complications, 30-Day Readmission Rates, and 1-Year Patient-Reported Outcomes. Spine (Phila Pa 1976) 42, 610–615 (2017)
- 14. Janssen SJ, Braun Y, Wood KB, Cha TD, Schwab JH: Allogeneic blood transfusions and postoperative infections after lumbar spine surgery. Spine J 15, 901–9 (2015)
- 15. Johnson DJ, Johnson CC, Cohen DB, Wetzler JA, Kebaish KM, Frank SM: Thrombotic and Infectious Morbidity Are Associated with Transfusion in Posterior Spine Fusion. HSS J 13, 152–158 (2017)
- 16. Kato S, Chikuda H, Ohya J, Oichi T, Matsui H, Fushimi K, Takeshita K, Tanaka S, Yasunaga H: Risk of infectious complications associated with blood transfusion in elective spinal surgery-a propensity score matched analysis. Spine J 16, 55–60 (2016)
- 17. Woods BI, Rosario BL, Chen A, Waters JH, Donaldson W, Kang J, Lee J: The association between perioperative allogeneic transfusion volume and postoperative infection in patients following lumbar spine surgery. J Bone Joint Surg Am 95, 2105–10 (2013)
- 18. Zhang H, Zhu Y, Yin X, Sun D, Wang S, Zhang J: Dose-response relationship between perioperative allogeneic blood transfusion and surgical site infections following spinal surgery. Spine J 24, 2218–2223 (2024)

- 19. Triantafyllopoulos GK, Soranoglou VG, Memtsoudis SG, Sculco TP, Poultsides LA: Rate and Risk Factors for Periprosthetic Joint Infection Among 36,494 Primary Total Hip Arthroplasties. J Arthroplasty 33, 1166–1170 (2018)
- 20. Kim JL, Park J-H, Han S-B, Cho IY, Jang K-M: Allogeneic Blood Transfusion Is a Significant Risk Factor for Surgical-Site Infection Following Total Hip and Knee Arthroplasty: A Meta-Analysis. J Arthroplasty 32, 320–325 (2017)
- 21. Berríos-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, Reinke CE, Morgan S, Solomkin JS, Mazuski JE, Dellinger EP, Itani KMF, Berbari EF, Segreti J, Parvizi J, Blanchard J, Allen G, Kluytmans JAJW, Donlan R, Schecter WP, Healthcare Infection Control Practices Advisory Committee: Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg 152, 784–791 (2017)
- 22. Jiang Q, Wang Y, Xie D, Wei J, Li X, Zeng C, Lei G, Yang T: Trends, complications, and readmission of allogeneic red blood cell transfusion in primary total hip arthroplasty in china: a national retrospective cohort study. Arch Orthop Trauma Surg 144, 483–491 (2024)
- 23. Maempel JF, Wickramasinghe NR, Clement ND, Brenkel IJ, Walmsley PJ: The preoperative levels of haemoglobin in the blood can be used to predict the risk of allogenic blood transfusion after total knee arthroplasty. Bone Joint J 98-B, 490–7 (2016)
- 24. Pedersen AB, Mehnert F, Overgaard S, Johnsen SP: Allogeneic blood transfusion and prognosis following total hip replacement: a population-based follow up study. BMC Musculoskelet Disord 10, 167 (2009)
- 25. Poultsides LA, Triantafyllopoulos GK, Sakellariou VI, Memtsoudis SG, Sculco TP: Infection risk assessment in patients undergoing primary total knee arthroplasty. Int Orthop 42, 87–94 (2018)
- 26. Taneja A, El-Bakoury A, Khong H, Railton P, Sharma R, Johnston KD, Puloski S, Smith C, Powell J: Association between Allogeneic Blood Transfusion and Wound Infection after Total Hip or Knee Arthroplasty: A Retrospective Case-Control Study. J Bone Jt Infect 4, 99–105 (2019)
- 27. Weber EWG, Slappendel R, Prins MH, van der Schaaf DB, Durieux ME, Strümper D: Perioperative blood transfusions and delayed wound healing after hip replacement surgery: effects on duration of hospitalization. Anesth Analg 100, 1416–1421 (2005)
- 28. Carson JL, Altman DG, Duff A, Noveck H, Weinstein MP, Sonnenberg FA, Hudson JI, Provenzano G: Risk of bacterial infection associated with allogeneic blood transfusion among patients undergoing hip fracture repair. Transfusion (Paris) 39, 694–700 (1999)
- 29. Eisler L, Hassan F, Lenke LG, Chihuri S, Hod EA, Li G: Allogeneic Red Blood Cell Transfusion and Infectious Complications Following Pediatric Spinal Fusion: NSQIP-P Analysis. JB JS Open Access 7, (2022)
- 30. Fisahn C, Jeyamohan S, Norvell DC, Tubbs RS, Moisi M, Chapman JR, Page J, Oskouian RJ: Association Between Allogeneic Blood Transfusion and Postoperative Infection in Major Spine Surgery. Clin Spine Surg 30, E988–E992 (2017)
- 31. Haase DR, Haase LR, Moon TJ, Dallman J, Vance D, Benedick A, Ochenjele G, Napora JK, Wise BT: Perioperative allogenic blood transfusions are associated with increased fracture related infection rates, but not nonunion in operatively treated distal femur fractures. Injury 54, 110754 (2023)
- 32. Kurra S, DeMercurio P, Lavelle WJ, Lavelle WF, Tallarico RA, Sun MH, Gorji R, Li F: Impact of liberal intraoperative allogeneic blood transfusion on postoperative morbidity and mortality in major thoracic and lumbar posterior spine instrumentation surgeries. Spine Deform 10, 573–579 (2022)

- 33. O'Malley SM, Sanders JO, Nelson SE, Rubery PT, O'Malley NT, Aquina CT: Significant Variation in Blood Transfusion Practice Persists Following Adolescent Idiopathic Scoliosis Surgery. Spine (Phila Pa 1976) 46, 1588–1597 (2021)
- 34. Paulino Pereira NR, Langerhuizen DWG, Janssen SJ, Hornicek FJ, Ferrone ML, Harris MB, Schwab JH: Are perioperative allogeneic blood transfusions associated with 90-days infection after operative treatment for bone metastases? J Surg Oncol 114, 997–1003 (2016)
- 35. Zaw AS, Kantharajanna SB, Maharajan K, Tan B, Saparamadu AA, Kumar N: Metastatic spine tumor surgery: does perioperative blood transfusion influence postoperative complications? Transfusion (Paris) 57, 2790–2798 (2017)
- 36. Falsetto A, Roffey DM, Jabri H, Kingwell SP, Stratton A, Phan P, Wai EK: Allogeneic blood transfusions and infection risk in lumbar spine surgery: An American College of Surgeons National Surgery Quality Improvement Program Study. Transfusion (Paris) 62, 1027–1033 (2022)
- 37. Triulzi DJ, Vanek K, Ryan DH, Blumberg N: A clinical and immunologic study of blood transfusion and postoperative bacterial infection in spinal surgery. Transfusion (Paris) 32, 517–24 (1992)
- 38. Drosos GI, Blatsoukas KS, Ververidis A, Tripsianis G, Chloropoulou P, Iatrou C, Kazakos K, Verettas D-A: Blood transfusion and cytokines' changes in total knee replacement. Arch Orthop Trauma Surg 132, 1505–13 (2012)
- 39. Innerhofer P, Walleczek C, Luz G, Hobisch-Hagen P, Benzer A, Stöckl B, Hessenberger G, Nussbaumer W, Schobersberger W: Transfusion of buffy coat-depleted blood components and risk of postoperative infection in orthopedic patients. Transfusion (Paris) 39, 625–32 (1999)
- 40. Newman ET, Watters TS, Lewis JS, Jennings JM, Wellman SS, Attarian DE, Grant SA, Green CL, Vail TP, Bolognesi MP: Impact of perioperative allogeneic and autologous blood transfusion on acute wound infection following total knee and total hip arthroplasty. J Bone Joint Surg Am 96, 279–84 (2014)
- 41. Friedman R, Homering M, Holberg G, Berkowitz SD: Allogeneic blood transfusions and postoperative infections after total hip or knee arthroplasty. J Bone Joint Surg Am 96, 272–8 (2014)
- 42. Bierbaum BE, Callaghan JJ, Galante JO, Rubash HE, Tooms RE, Welch RB: An analysis of blood management in patients having a total hip or knee arthroplasty. J Bone Joint Surg Am 81, 2–10 (1999)
- 43. Osterhoff G, Burla L, Werner CML, Jentzsch T, Wanner GA, Simmen H-P, Sprengel K: Role of Pre-Operative Blood Transfusion and Subcutaneous Fat Thickness as Risk Factors for Surgical Site Infection after Posterior Thoracic Spine Stabilization. Surg Infect (Larchmt) 16, 333–7 (2015)
- 44. Christodoulou AG, Givissis P, Symeonidis PD, Karataglis D, Pournaras J: Reduction of postoperative spinal infections based on an etiologic protocol. Clin Orthop Relat Res 444, 107–13 (2006)
- 45. Everhart JS, Bishop JY, Barlow JD: Medical comorbidities and perioperative allogeneic red blood cell transfusion are risk factors for surgical site infection after shoulder arthroplasty. J Shoulder Elbow Surg 26, 1922–1930 (2017)

Figures

Fig.1:

Study or	with allo.						Risk Ratio
Subgroup	Events	iotal	Events	iotal	vveignt	IV, Random, 95% CI	IV, Random, 95% CI
Subgroup = Artroplasty							
Basora et al.2010 [126]	38	575	28	335	3.2%	0.79 [0.49; 1.26]	-
Jiang et al.2024 [139]	29	10057	40	10057	3.1%	0.72 [0.45; 1.17]	
Maempel et al.2016 [144]	10	262	21	2022	2.5%	3.68 [1.75; 7.72]	- 1
Pedersen et al.2009 [135]	41	9063	22	18974	3.1%	3.90 [2.33; 6.55]	-
Poultsides et al.2018 [26]	36	4110	81	13849	3.3%	1.50 [1.01; 2.21]	1
Taneja et al.2019 [115]	82	3098	372	24798	3.6%	1.76 [1.39; 2.23]	
Triantafyllopoulos et al.2018 [44]	37	4558	117	31936	3.4%	2.22 [1.53; 3.20]	#
NeberEWG et al.2005 [186]	10	92	8	352	2.2%	4.78 [1.94; 11.77]	
nnerhofer et al.2005 [238]	13	122	8	186	2.3%	2.48 [1.06; 5.80]	
Drosos et al.2012 [82]	13	71	14	177	2.6%	2.31 [1.15; 4.68]	_
/amvakas et al.1995 [204]	10	108	2	312	1.2%	14.44 [3.22; 64.89]	
Shander et al.2009 [179]	6	162	17	872	2.1%	1.90 [0.76; 4.75]	++-
Newman et al.2014 [182]	14	836	18	2516	2.6%	2.34 [1.17; 4.69]	-
Rosencher et al.2003 [224]	146	1369	212	2455	3.7%	1.23 [1.01; 1.51]	<u>=</u>
Friedman et al.2014 [52]	392	5864	646	8215	3.8%	0.85 [0.75; 0.96]	-
Bierbaum et al.1999 [183]	105	1519	293	7963	3.7%	1.88 [1.51; 2.33]	T 🖶
Total (95% CI)		41866		125019	46.4%	1.87 [1.38; 2.53]	•
Heterogeneity: Tau ² = 0.2932; Chi ²	= 134.37,	df = 15 (l	P < 0.01);	$1^2 = 89\%$			
Subgroup = Spine							
Carson et al.1999 [215]	286	5524	151	4074	3.7%	1.40 [1.15; 1.69]	
Eisler et al.2022 [21]	150	4098	250	15061	3.7%	2.21 [1.81; 2.69]	-
Elsamadicy et al.2017 [388]	19	60	24	100	3.1%	1.32 [0.79; 2.20]	- <mark> - :</mark>
Fisahn et al.2017 [31]	13	36	2	20	1.4%	3.61 [0.90; 14.42]	
Haase et al.2023 [75]	21	139	9	227	2.5%	3.81 [1.80; 8.08]	
Johnston et al.2006 [137]	90	1068	160	2503	3.6%	1.32 [1.03; 1.69]	-
(ato et al.2016 [88]	385	5289	1971	79361	3.8%	2.93 [2.64; 3.26]	+
Curra et al.2022 [100]	13	197	3	92	1.6%	2.02 [0.59; 6.93]	
O'Malley et al.2021 [67]	142	1625	258	6064	3.7%	2.05 [1.69; 2.50]	<u> </u>
PaulinoPereira et al.2016 [153]	178	774	94	492	3.7%	1.20 [0.96; 1.50]	<u>=</u>
Shen et al.2014 [123]	12	39	5	63	2.0%	3.88 [1.48; 10.16]	T :
Zaw et al.2017 [30]	38	133	66	114	3.5%	0.49 [0.36; 0.67]	
alsetto et al.2022 [39]	161	1992	112	1992	3.6%	1.44 [1.14; 1.81]	
Johnson et al.2017 [37]	14	603	2	360	1.2%	4.18 [0.96; 18.28]	
Janssen et al. 2015 [23]	62	293	170	3428	3.6%	4.27 [3.27; 5.56]	
riulzi et al.1992 [200]	12	24	14	85	2.8%	3.04 [1.63; 5.67]	
nnerhofer et al.1999 [167]	26	197	8	188	2.5%	3.10 [1.44; 6.68]	
(im et al.2022 [80]	474			116778	3.8%	2.45 [2.11; 2.83]	
Total (95% CI)		99349		231002		2.01 [1.53; 2.65]	
Heterogeneity: Tau ² = 0.2765; Chi ²	= 229.21,		P < 0.01);			2.01 [1100, 2.00]	
Total (95% CI)		141215		356021	100.0%	1.94 [1.59; 2.37]	•

Fig. 2:

Study or		th allo.		out allo.	147-1-1-1	Risk Ratio	Risk Ratio
Subgroup	Events	Iotai	Events	Iotai	weight	IV, Random, 95% CI	IV, Random, 95% CI
Subgroup = Event with none tr	ansfused						
Basora et al.2010 [126]	38	575	28	335	3.2%	0.79 [0.49; 1.26]	-
Carson et al.1999 [215]	286	5524	151	4074	3.7%	1.40 [1.15; 1.69]	<u></u>
Eisler et al.2022 [21]	150	4098	250	15061	3.7%	2.21 [1.81; 2.69]	
Elsamadicy et al.2017 [388]	19	60	24	100	3.1%	1.32 [0.79; 2.20]	- - - - - - - - - -
alsetto et al.2022 [39]	161	1992	112	1992	3.6%	1.44 [1.14; 1.81]	<u> </u>
isahn et al.2017 [31]	13	36	2	20	1.4%	3.61 [0.90; 14.42]	+ = -
laase et al.2023 [75]	21	139	9	227	2.5%	3.81 [1.80; 8.08]	: -
anssen et al. 2015 [23]	62	293	170	3428	3.6%	4.27 [3.27; 5.56]	
iang et al.2024 [139]	29	10057	40	10057	3.1%	0.72 [0.45; 1.17]	
ohnson et al.2017 [37]	14	603	2	360	1.2%	4.18 [0.96; 18.28]	- I
ohnston et al.2006 [137]	90	1068	160	2503	3.6%	1.32 [1.03; 1.69]	=
(ato et al.2016 [88]	385	5289	1971	79361	3.8%	2.93 [2.64; 3.26]	+
urra et al.2022 [100]	13	197	3	92	1.6%	2.02 [0.59; 6.93]	 •
laempel et al.2016 [144]	10	262	21	2022	2.5%	3.68 [1.75; 7.72]	- 11
)'Malley et al.2021 [67]	142	1625	258	6064	3.7%	2.05 [1.69; 2.50]	
aulinoPereira et al.2016 [153]	178	774	94	492	3.7%	1.20 [0.96; 1.50]	=
edersen et al.2009 [135]	41	9063	22	18974	3.1%	3.90 [2.33; 6.55]	-
oultsides et al.2018 [26]	36	4110	81	13849	3.3%	1.50 [1.01; 2.21]	
hen et al.2014 [123]	12	39	5	63	2.0%	3.88 [1.48; 10.16]	-
aneja et al.2019 [115]	82	3098	372	24798	3.6%	1.76 [1.39; 2.23]	—
riantafyllopoulos et al.2018 [44]	37	4558	117	31936	3.4%	2.22 [1.53; 3.20]	=
VeberEWG et al.2005 [186]	10	92	8	352	2.2%	4.78 [1.94; 11.77]	
aw et al.2017 [30]	38	133	66	114	3.5%	0.49 [0.36; 0.67]	
otal (95% CI)		53685		216274		1.88 [1.46; 2.44]	◆
eterogeneity: Tau ² = 0.3170; Chi ²	= 269.17,	df = 22 (F	o < 0.01);	$I^2 = 92\%$			
ubgroup = Allogenic non-exp	osed						
ierbaum et al.1999 [183]	105	1519	293	7963	3.7%	1.88 [1.51; 2.33]	
rosos et al.2012 [82]	13	71	14	177	2.6%	2.31 [1.15; 4.68]	
riedman et al.2014 [52]	392	5864	646	8215	3.8%	0.85 [0.75; 0.96]	<u>+</u>
nerhofer et al.1999 [167]	26	197	8	188	2.5%	3.10 [1.44; 6.68]	-
nerhofer et al.2005 [238]	13	122	8	186	2.3%	2.48 [1.06; 5.80]	<u> </u>
im et al.2022 [80]	474	77258		116778	3.8%	2.45 [2.11; 2.83]	<u> </u>
ewman et al.2014 [182]	14	836	18	2516	2.6%	2.34 [1.17; 4.69]	
osencher et al.2003 [224]	146	1369	212	2455		1.23 [1.01; 1.51]	<u> </u>
hander et al.2009 [179]	6	162	17	872		1.90 [0.76; 4.75]	
riulzi et al.1992 [200]	12	24	14	85		3.04 [1.63; 5.67]	+
amvakas et al.1995 [204]	10	108	2	312		14.44 [3.22; 64.89]	
otal (95% CI)		87530		139747		2.04 [1.48; 2.82]	•
eterogeneity: Tau ² = 0.2077; Chi ²	= 155.88,	df = 10 (F	P < 0.01);	I ² = 94%			
otal (95% CI)		141215			100.0%	1.94 [1.59; 2.37]	•
eterogeneity: Tau ² = 0.2745; Chi ² :				$I^2 = 93\%$			
est for subgroup differences: Chi ² =	= 0.15, df =	= 1 (P = 0	0.70)				0.1 0.5 1 2 10

Study or		th allo.		out allo.	Mainht	Risk Ratio	Risk Ratio
Subgroup	Events	Iotai	Events	Iotai	vveignt	IV, Random, 95% CI	IV, Random, 95% CI
Subgroup = SSI/PJI							
Basora et al.2010 [126]	38	575	28	335	3.2%	0.79 [0.49; 1.26]	-
Prosos et al.2012 [82]	13	71	14	177	2.6%	2.31 [1.15; 4.68]	—
laase et al.2023 [75]	21	139	9	227	2.5%	3.81 [1.80; 8.08]	: •
ohnson et al.2017 [37]	14	603	2	360	1.2%	4.18 [0.96; 18.28]	
(im et al.2022 [80]	474	77258	293	116778	3.8%	2.45 [2.11; 2.83]	+
(urra et al.2022 [100]	13	197	3	92	1.6%	2.02 [0.59; 6.93]	++-
/laempel et al.2016 [144]	10	262	21	2022	2.5%	3.68 [1.75; 7.72]	
lewman et al.2014 [182]	14	836	18	2516	2.6%	2.34 [1.17; 4.69]	———
Shen et al.2014 [123]	12	39	5	63	2.0%	3.88 [1.48; 10.16]	-
aneja et al.2019 [115]	82	3098	372	24798	3.6%	1.76 [1.39; 2.23]	<u> </u>
riantafyllopoulos et al.2018 [44]	37	4558	117	31936	3.4%	2.22 [1.53; 3.20]	
otal (95% CI)		87636		179304	29.0%	2.23 [1.66; 2.99]	→
leterogeneity: Tau ² = 0.1405; Chi ²	= 29.65, d	f = 10 (P	< 0.01);	² = 66%			
ubgroup = General Infection							
3ierbaum et al.1999 [183]	105	1519	293	7963	3.7%	1.88 [1.51; 2.33]	-
Carson et al.1999 [215]	286	5524	151	4074	3.7%	1.40 [1.15; 1.69]	<u>=</u>
isler et al.2022 [21]	150	4098	250	15061	3.7%	2.21 [1.81; 2.69]	<u> </u>
Isamadicy et al.2017 [388]	19	60	24	100	3.1%	1.32 [0.79; 2.20]	-
alsetto et al.2022 [39]	161	1992	112	1992	3.6%	1.44 [1.14; 1.81]	<u></u>
isahn et al.2017 [31]	13	36	2	20	1.4%	3.61 [0.90; 14.42]	
riedman et al.2014 [52]	392	5864	646	8215	3.8%	0.85 [0.75; 0.96]	<u> </u>
nnerhofer et al.1999 [167]	26	197	8	188	2.5%	3.10 [1.44; 6.68]	-
nnerhofer et al.2005 [238]	13	122	8	186	2.3%	2.48 [1.06; 5.80]	
anssen et al. 2015 [23]	62	293	170	3428	3.6%	4.27 [3.27; 5.56]	
iang et al.2024 [139]	29	10057	40	10057	3.1%	0.72 [0.45; 1.17]	
ohnston et al.2006 [137]	90	1068	160	2503	3.6%	1.32 [1.03; 1.69]	
(ato et al.2016 [88]	385	5289	1971	79361	3.8%	2.93 [2.64; 3.26]	+
D'Malley et al.2021 [67]	142	1625	258	6064	3.7%	2.05 [1.69; 2.50]	<u> </u>
aulinoPereira et al.2016 [153]	178	774	94	492	3.7%	1.20 [0.96; 1.50]	<u> </u>
edersen et al.2009 [135]	41	9063	22	18974	3.1%	3.90 [2.33; 6.55]	T -
oultsides et al.2018 [26]	36	4110	81	13849	3.3%	1.50 [1.01; 2.21]	
Rosencher et al.2003 [224]	146	1369	212	2455	3.7%	1.23 [1.01; 1.51]	<u></u>
Shander et al.2009 [179]	6	162	17	872	2.1%	1.90 [0.76; 4.75]	
riulzi et al.1992 [200]	12	24	14	85	2.8%	3.04 [1.63; 5.67]	
/amvakas et al.1995 [204]	10	108	2	312	1.2%	14.44 [3.22; 64.89]	
VeberEWG et al.2005 [186]	10	92	8	352	2.2%	4.78 [1.94; 11.77]	——
aw et al.2017 [30]	38	133	66	114	3.5%	0.49 [0.36; 0.67]	-
otal (95% CI)		53579		176717		1.83 [1.41; 2.36]	-
leterogeneity: Tau ² = 0.3227; Chi ²	= 418.52,		o < 0.01);	l ² = 95%	/0		
otal (95% CI)		141215			100.0%	1.94 [1.59; 2.37]	•
leterogeneity: Tau ² = 0.2745; Chi ²	= 468.68,			$I^2 = 93\%$			
est for subgroup differences: Chi ²							0.1 0.5 1 2 10

Fig. 4

		SSI			on-SSI			Mean Difference	_		n Differ		
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	ı	IV, Rar	ndom,	95% CI	
Woods et al.2013 [130]	2.89	2.3800	56	1.40	1.1900	91	18.0%	1.49 [0.82; 2.16]				-	-
Zhang et al.2024 [79]	2.40	1.9000	124	1.60	1.2000	248	25.7%	0.80 [0.43; 1.17]			-	-	
Osterhoff et al.2015 [178]	1.20	1.7000	26	0.70	1.9000	218	17.3%	0.50 [-0.20; 1.20]			++	•	
Christodoulou et al.2006 [169]	2.33	0.7410	8	0.67	1.4810	94	19.8%	1.67 [1.07; 2.26]				-	•
Everhart et al.2017 [157]	2.00	1.4810	22	1.33	0.7410	685	19.2%	0.67 [0.05; 1.29]				-	
Total (95% CI)			236			1336	100.0%	1.02 [0.58; 1.45]				-	
Heterogeneity: Tau ² = 0.1583; Ch			- · · · ·										
									-2	-1	0	1	2