G90

Given recent warnings regarding the use of fluoroquinolones: is there a role for these antibiotics in the management Gram-negative and staphylococcal peri-prosthetic joint infections treated with implant retention (DAIR), when other alternative antibiotic options are available?

Staffan Tevell, Craig Aboltins, Angela Hewlett, Dolors Rodriguez Pardo, Bernadette Young

Response/Recommendation:

Based on their efficacy and the low absolute risk for serious adverse events, fluoroquinolones have a role in the management of Gram-negative and staphylococcal periprosthetic joint infections treated with debridement, antibiotics and implant retention (DAIR). Relevant pre-treatment investigations, screening of medication list, patient information, and careful monitoring during treatment should be considered in patients at risk for serious adverse events.

Level of evidence:

Weak

Delegate Vote:

Background:

FQs are commonly used in the oral treatment phase of periprosthetic joint infections (PJIs) caused by Gram-negative bacteria and staphylococci¹⁻⁶. Due to reports of significant adverse events such as tendinopathy, neuropathy, dysglycemia and aortic aneurysm, regulatory agencies have issued warnings on the use of FQs⁷⁻¹². While these warnings do not specifically target PJIs, caution is recommended, particularly in certain patient categories. This review summarizes the risks and benefits of using FQs in PJI treatment.

Fluoroquinolone use in PJIs:

Gram-negative PJIs (GNB-PJIs)

Seven cohort studies compared FQ-containing regimens to alternative treatments. Of these, four studies reported a benefit associated with FQs¹³⁻¹⁶. A pooled analysis of data from 187 patients across five studies¹⁴⁻¹⁸, found a statistically significant increase in treatment success with FQ therapy (reported cure 87% vs. 62%, p=0.0005). In contrast, a recent prospective cohort containing 100 patients did not find any significant advantage in using FQs in GNB-PJIs¹⁹.

Staphylococcal PJIs Treated with DAIR

Twelve observational studies compared FQ-containing antibiotic regimens to other regimens in staphylococcal PJIs treated with DAIR $^{14,20-30}$. Most found no statistically significant difference in outcome. However, in a pooled analysis of unadjusted data from eight studies $^{14,20-26}$, a FQ-based regimen showed an association with improved treatment success (reported cure 87% vs 75%, p < 0.0001).

Several studies detected a positive effect of FQs in the univariate but not multivariate analysis²⁵⁻²⁷. Shabana *et al.* found that resistance to FQs was an independent risk factor for clinical failure in multivariate analysis³⁰ while Senneville *et al.* reported FQ/rifampin therapy independently predicted remission²². A meta-analysis suggests that FQ/rifampin combinations were more effective than other rifampin-containing antibiotic strategies³¹.

Review of potential adverse events during fluoroquinolone therapy:

Tendinopathy

Animal models demonstrate FQ-induced tendon lesions³², and observational studies in humans have evaluated the risk of tendon injury/rupture associated to FQ treatment³³⁻⁴⁶. An increased incidence of tendinopathy has been reported in connection with FQ use; in one large, population-based study, the incidence of tendinitis was 6.61 per 10⁵ person-years for FQ treated patients compared with 3.64 for controls⁴²⁻⁴⁴. An elevated risk of levofloxacin compared to ciprofloxacin or moxifloxacin was reported in several studies³³⁻³⁶, but a focused systematic review did not confirm this differential risk⁴⁷. FQ therapy with ciprofloxacin or levofloxacin within three months of surgical tendon repair for achilles or rotator cuff injury was associated with higher revision rates within two years³³. Various comorbidities and patient factors may increase the risk of FQ-associated tendinopathy³⁷⁻⁴².

QT Prolongation and Arrhythmia

FQs can prolong the QT interval^{48,49}. A small, uncontrolled retrospective cohort study reported that ventricular tachycardia occurred in 0.2% of patients with long QTc at baseline treated with levofloxacin⁵⁰. While some studies link moxifloxacin to a higher risk of arrhythmia^{51,52}, other studies found no significant differences compared with other antibiotics^{49,51-53}. Studies of levofloxacin have likewise yielded mixed results^{51,52,54-56}. Large population studies, such as those by Polgreen *et al.* and Ellenardottir *et al.*, did not find an excess risk of ventricular arrhythmia or out-of-hospital cardiac arrest with FQs^{57,58}. *Aortic Aneurysm and Dissection (AA/AD)*

FQ-induced collagen degradation is hypothesized to occur in vascular walls and may increase the risk of AA/AD⁵⁹. However, the relationship between FQs and AA/AD remains controversial. Epidemiological studies report divergent results regarding the relationship between FQs and AA/AD^{36,45,53,60-74}, and only two of these reported stratified data on the different FQs^{36,69}. Aortic mortality was higher in FQ users with pre-existing AA/AD^{60,75}. Dong *et al.* demonstrated an association between infectious conditions and AA/AD⁷⁴. The association of AA/AD to FQs with amoxicillin as comparator initially found by Gopalakrishnan *et al.* did not retain significance when patients without baseline imaging were excluded⁶⁷. Five systematic reviews all report increased risk for AA after FQ use when compared to other antibiotics or no antibiotic treatment⁷⁵⁻⁷⁹. However, two reviews found no association to AD^{77,78}, and one reported no higher risk for AA/AD when comparing with other broad-spectrum antibiotics⁷⁸.

Peripheral Neuropathy and CNS Toxicity

FQ use has been associated with peripheral neuropathy, exacerbation of myasthenia gravis, and CNS neurotoxicity⁸⁰⁻⁸³. Three case-control studies report an elevated risk of peripheral neuropathy during/after FQ use compared to controls⁸⁴⁻⁸⁶. Morales *et al.* reported increased risk for peripheral neuropathy persisting up to 180 days after FQ exposure⁸⁶. Regarding CNS toxicity, Ellis *et al.* reported a HR of 1.08 (95%CI 1.05-1.11)

Retinal detachment (RD)

Eleven studies investigating whether FQ associated collagen degeneration could lead to RD were found⁸⁷⁻⁹⁷. Etminan *et al.* showed an increased RR of 4.50 (95%CI 3.56-5.70) for current use of FQs and RD and found no risk with recent or past use⁸⁹, but these results could not be replicated in another setting⁹⁰. Other studies likewise report conflicting results, including some reporting associations with multiple other antibiotics as well as FQ ⁹³⁻⁹⁶. Two systematic reviews did not support an association between FQ use and RD^{98,99}.

Dvsglvcemia

Dysglycemia, including hypoglycemia and hyperglycemia, has been documented during FQ therapy¹⁰⁰⁻¹⁰⁴. This was seen particularly for patients with diabetes, where

moxifloxacin^{100,103} or levofloxacin^{102,104} were used, and when combined with insulin or sulfonylurea¹⁰⁴. A systematic review concluded that caution must be taken when using FQs in diabetic patients, and that ciprofloxacin may be the FQ least likely to cause dysglycaemia¹⁰⁵.

Conclusion:

Available data suggest, with moderate certainty, a potential independent benefit in treating Gram-negative periprosthetic joint infection (GNB-PJI) managed with debridement, antibiotics and implant retention (DAIR) with fluoroquinolones (FQs). For staphylococcal PJI treated with DAIR, there is some evidence for improved clinical outcomes when combining FQs and rifampin compared with other rifampin combinations and non-rifampin-based regimens.

Current evidence suggests that FQ use is associated with an increased risk of tendinopathy, peripheral neuropathy and dysglycemia in diabetics, even though the absolute risk is low. There is conflicting evidence for an association between FQs and cardiac arrhythmia, aortic aneurysm and dissection, and retinal detachment.

References:

- 1 Zimmerli W, S., P. in *Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases* (ed. Dolin R, Bennett JE, Blaser MJ) 1430-1442 (Elsevier, 2021).
- 2 Gachet, B., Dechartres, A., Senneville, E. & Robineau, O. Systematic review on oral antibacterial relay therapy for acute staphylococcal prosthetic joint infections treated with debridement, antibiotics and implant retention (DAIR). *J Antimicrob Chemother* **79**, 3091-3099 (2024). https://doi.org:10.1093/jac/dkae347
- 3 Rottier, W., Seidelman, J. & Wouthuyzen-Bakker, M. Antimicrobial treatment of patients with a periprosthetic joint infection: basic principles. *Arthroplasty* 5, 10 (2023). https://doi.org:10.1186/s42836-023-00169-4
- 4 Ferreira, L. *et al.* Antibiotics with antibiofilm activity rifampicin and beyond. *Frontiers in microbiology* **15**, 1435720 (2024). https://doi.org:10.3389/fmicb.2024.1435720
- 5 Anemuller, R. *et al.* Hip and Knee Section, Treatment, Antimicrobials: Proceedings of International Consensus on Orthopedic Infections. *J. Arthroplasty* **34**, S463-S475 (2019). https://doi.org:10.1016/j.arth.2018.09.032
- 6 Zimmerli, W. & Sendi, P. Role of Rifampin against Staphylococcal Biofilm Infections In Vitro, in Animal Models, and in Orthopedic-Device-Related Infections. *Antimicrobial agents and chemotherapy* **63** (2019). https://doi.org:10.1128/AAC.01746-18
- 7 Mandell, L. A., Ball, P. & Tillotson, G. Antimicrobial safety and tolerability: differences and dilemmas. *Clinical infectious diseases: an official publication of the Infectious Diseases Society of America* **32 Suppl 1**, S72-79 (2001). https://doi.org:10.1086/319379
- 8 Mahoney, M. V. & Swords, K. E. Fluoroquinolones: Friends or Foes? *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* **73**, 857-858 (2021). https://doi.org:10.1093/cid/ciab150
- 9 Bennett, A. C., Bennett, C. L., Witherspoon, B. J. & Knopf, K. B. An evaluation of reports of ciprofloxacin, levofloxacin, and moxifloxacin-association neuropsychiatric toxicities, long-term disability, and aortic aneurysms/dissections disseminated by the Food and Drug Administration and the European Medicines Agency. *Expert Opin Drug Saf* 18, 1055-1063 (2019). https://doi.org;10.1080/14740338.2019.1665022
- 10 EMA. Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics, https://www.ema.europa.eu/en/documents/referral/quinolone-fluoroquinolone-article-31-referral-disabling-potentially-permanent-side-effects-lead en.pdf> (2018).

- 11 MHRA. Fluoroquinolone antibiotics: must now only be prescribed when other commonly recommended antibiotics are inappropriate. www.gov.uk/drug-safety-update/fluoroquinolone-antibiotics-must-now-only-be-prescribed-when-other-commonly-recommended-antibiotics-are-inappropriate (2024)
- 12 FDA. FDA warns about increased risk of ruptures or tears in the aorta blood vessel with fluoroquinolone antibiotics in certain patients. www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-increased-risk-ruptures-or-tears-aorta-blood-vessel-fluoroquinolone-antibiotics (2018).
- 13 Rodriguez-Pardo, D. *et al.* Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. *Clinical Microbiology & Infection* **20**, O911-919 (2014). https://doi.org/10.1111/1469-0691.12649
- 14 Mancheno-Losa, M. *et al.* Prognosis of unexpected positive intraoperative cultures in arthroplasty revision: A large multicenter cohort. *J. Infect.* **83**, 542-549 (2021). https://doi.org:https://dx.doi.org/10.1016/j.jinf.2021.09.001
- 15 Tornero, E. *et al.* Risk factors for failure in early prosthetic joint infection treated with debridement. Influence of etiology and antibiotic treatment. *Journal of Applied Biomaterials & Functional Materials* **12**, 129-134 (2014). https://doi.org/10.5301/jabfm.5000209
- 16 Martinez-Pastor, J. C. *et al.* Outcome of acute prosthetic joint infections due to gramnegative bacilli treated with open debridement and retention of the prosthesis. *Antimicrob. Agents Chemother.* **53**, 4772-4777 (2009). https://doi.org/10.1128/AAC.00188-09
- 17 Aboltins, C. A. *et al.* Gram-negative prosthetic joint infection treated with debridement, prosthesis retention and antibiotic regimens including a fluoroquinolone. *Clinical Microbiology & Infection* **17**, 862-867 (2011). https://doi.org:https://dx.doi.org/10.1111/j.1469-0691.2010.03361.x
- 18 Grossi, O. *et al.* Gram-negative prosthetic joint infections managed according to a multidisciplinary standardized approach: risk factors for failure and outcome with and without fluoroquinolones. *J. Antimicrob. Chemother.* **71**, 2593-2597 (2016). https://doi.org/10.1093/jac/dkw202
- 19 Davis, J. S. *et al.* Predictors of Treatment Success After Periprosthetic Joint Infection: 24-Month Follow up From a Multicenter Prospective Observational Cohort Study of 653 Patients. *Open Forum Infectious Diseases* **9**, ofac048 (2022). https://doi.org/10.1093/ofid/ofac048
- 20 Tornero, E. *et al.* Prosthetic joint infections due to Staphylococcus aureus and coagulasenegative staphylococci. *Int. J. Artif. Organs* **35**, 884-892 (2012). https://doi.org/https://dx.doi.org/10.5301/ijao.5000148
- 21 Soriano, A. *et al.* Treatment of acute post-surgical infection of joint arthroplasty. *Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases* **12**, 930-933 (2006). https://doi.org:10.1111/j.1469-0691.2006.01463.x
- 22 Senneville, E. *et al.* Outcome and predictors of treatment failure in total hip/knee prosthetic joint infections due to Staphylococcus aureus. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* **53**, 334-340 (2011). https://doi.org:10.1093/cid/cir402
- 23 Lourtet-Hascoet, J., Bicart-See, A., Felice, M. P., Giordano, G. & Bonnet, E. Staphylococcus lugdunensis, a serious pathogen in periprosthetic joint infections: comparison to Staphylococcus aureus and Staphylococcus epidermidis. *Int. J. Infect. Dis.* **51**, 56-61 (2016). https://doi.org/https://dx.doi.org/10.1016/j.ijid.2016.08.007

- 24 Espindola, R. *et al.* Rates and Predictors of Treatment Failure in Staphylococcus aureus Prosthetic Joint Infections According to Different Management Strategies: A Multinational Cohort Study-The ARTHR-IS Study Group. *Infectious Diseases & Therapy* **11**, 2177-2203 (2022). https://doi.org/10.1007/s40121-022-00701-0
- 25 Beldman, M. *et al.* If, When, and How to Use Rifampin in Acute Staphylococcal Periprosthetic Joint Infections, a Multicentre Observational Study. *Clin. Infect. Dis.* **73**, 1634-1641 (2021). https://doi.org/https://dx.doi.org/10.1093/cid/ciab426
- 26 Becker, A. *et al.* Duration of rifampin therapy is a key determinant of improved outcomes in early-onset acute prosthetic joint infection due to Staphylococcus treated with a debridement, antibiotics and implant retention (DAIR): a retrospective multicenter study in France. *Journal Of Bone And Joint Infection* **5**, 28-34 (2020). https://doi.org/https://dx.doi.org/10.7150/jbji.40333
- 27 Lesens, O. *et al.* Should we expand the indications for the DAIR (debridement, antibiotic therapy, and implant retention) procedure for Staphylococcus aureus prosthetic joint infections? A multicenter retrospective study. *Eur. J. Clin. Microbiol. Infect. Dis.* **37**, 1949-1956 (2018). https://doi.org:https://dx.doi.org/10.1007/s10096-018-3330-7
- 28 Tai, D. B. G. *et al.* Truth in DAIR: Duration of Therapy and the Use of Quinolone/Rifampin-Based Regimens After Debridement and Implant Retention for Periprosthetic Joint Infections. *Open Forum Infectious Diseases* **9**, ofac363 (2022). https://doi.org/https://dx.doi.org/10.1093/ofid/ofac363
- 29 Puhto, A. P. *et al.* Predictors of treatment outcome in prosthetic joint infections treated with prosthesis retention. *Int. Orthop.* **39**, 1785-1791 (2015). https://doi.org:10.1007/s00264-015-2819-2
- 30 Shabana, N. S. *et al.* The Clinical Outcome of Early Periprosthetic Joint Infections Caused by Staphylococcus epidermidis and Managed by Surgical Debridement in an Era of Increasing Resistance. *Antibiotics* **12**, 27 (2022). https://doi.org/https://dx.doi.org/10.3390/antibiotics12010040
- 31 Cortes-Penfield, N. W., Hewlett, A. L. & Kalil, A. C. Adjunctive Rifampin Following Debridement and Implant Retention for Staphylococcal Prosthetic Joint Infection: Is it Effective if not Combined With a Fluoroquinolone? *Open Forum Infect Dis* **9**, ofac582 (2022). https://doi.org:10.1093/ofid/ofac582
- 32 Kaleagasioglu, F. & Olcay, E. Fluoroquinolone-induced tendinopathy: etiology and preventive measures. *Tohoku J. Exp. Med.* **226**, 251-258 (2012). https://doi.org:10.1620/tjem.226.251
- 33 Waters, T. L. *et al.* Is Fluoroquinolone Exposure after Primary Tendon Repair Associated with Higher Rates of Reoperations? A Matched Cohort Study. *Orthop Rev (Pavia)* **15**, 67914 (2023). https://doi.org:10.52965/001c.67914
- 34 Nyyssonen, T., Lantto, I., Luthje, P., Selander, T. & Kroger, H. Drug treatments associated with Achilles tendon rupture. A case-control study involving 1118 Achilles tendon ruptures. *Scand. J. Med. Sci. Sports* **28**, 2625-2629 (2018). https://doi.org:10.1111/sms.13281
- 35 Baik, S., Lau, J., Huser, V. & McDonald, C. J. Association between tendon ruptures and use of fluoroquinolone, and other oral antibiotics: a 10-year retrospective study of 1 million US senior Medicare beneficiaries. *BMJ Open* **10**, e034844 (2020). https://doi.org:10.1136/bmjopen-2019-034844
- 36 Patel, N. *et al.* Fluoroquinolone-associated adverse events of interest among hospitalized veterans affairs patients with community-acquired pneumonia who were treated with a fluoroquinolone: A focus on tendonitis, Clostridioides difficile infection, and aortic aneurysm. *Pharmacotherapy* **44**, 49-60 (2024). https://doi.org:10.1002/phar.2877

- 37 Persson, R. & Jick, S. Clinical implications of the association between fluoroquinolones and tendon rupture: The magnitude of the effect with and without corticosteroids. *Br. J. Clin. Pharmacol.* **85**, 949-959 (2019). https://doi.org:10.1111/bcp.13879
- 38 Morales, D. R. *et al.* Relative and Absolute Risk of Tendon Rupture with Fluoroquinolone and Concomitant Fluoroquinolone/Corticosteroid Therapy: Population-Based Nested Case-Control Study. *Clin Drug Investig* **39**, 205-213 (2019). https://doi.org:10.1007/s40261-018-0729-y
- 39 Jupiter, D. C., Fang, X., Ashmore, Z., Shibuya, N. & Mehta, H. B. The Relative Risk of Achilles Tendon Injury in Patients Taking Quinolones. *Pharmacotherapy* **38**, 878-887 (2018). https://doi.org:10.1002/phar.2162
- 40 Briones-Figueroa, A., Sifuentes-Giraldo, W. A., Morell-Hita, J. L. & Vazquez-Diaz, M. Achilles Tendon Rupture Associated with the Use of Fluoroquinolones in Patients Over 60 Years of AGE: Experience From a Single Tertiary Centre. *Reumatol Clin (Engl Ed)* 17, 141-143 (2021). https://doi.org:10.1016/j.reuma.2019.08.004
- 41 Corrao, G. *et al.* Evidence of tendinitis provoked by fluoroquinolone treatment a case-control study. *Drug Saf.* **29(10)**, 889-896 (2006). https://doi.org/https://dx.doi.org/10.2165/00002018-200629100-00006
- 42 Chang, C. K. *et al.* Positive Association Between Fluoroquinolone Exposure and Tendon Disorders: A Nationwide Population-Based Cohort Study in Taiwan. *Front Pharmacol* **13**, 814333 (2022). https://doi.org;10.3389/fphar.2022.814333
- 43 Fleming, V. H., Xu, J., Chen, X., Hall, D. & Southwood, R. L. Risk of Tendon Injury in Patients Treated With Fluoroquinolone (FQ) Versus Non-Fluoroquinolone Antibiotics for Community-Acquired Pneumonia (CAP). *Ann. Pharmacother.* **58**, 771-780 (2024). https://doi.org:10.1177/10600280231210275
- 44 Chinen, T., Sasabuchi, Y., Matsui, H. & Yasunaga, H. Association Between Third-Generation Fluoroquinolones and Achilles Tendon Rupture: A Self-Controlled Case Series Analysis. *Ann Fam Med* **19**, 212-216 (2021). https://doi.org:10.1370/afm.2673
- 45 Daneman, N., Lu, H. & Redelmeier, D. A. Fluoroquinolones and collagen associated severe adverse events: a longitudinal cohort study. *BMJ Open* **5**, e010077 (2015). https://doi.org:10.1136/bmjopen-2015-010077
- 46 Arabyat, R. M., Raisch, D. W., McKoy, J. M. & Bennett, C. L. Fluoroquinolone-associated tendon-rupture: a summary of reports in the Food and Drug Administration's adverse event reporting system. *Expert Opin Drug Saf* 14, 1653-1660 (2015). https://doi.org:10.1517/14740338.2015.1085968
- 47 Sangiorgio, A. *et al.* Achilles tendon complications of fluoroquinolone treatment: a molecule-stratified systematic review and meta-analysis. *EFORT Open Rev* **9**, 581-588 (2024). https://doi.org:10.1530/EOR-23-0181
- 48 Chen, Q. *et al.* Orally administered moxifloxacin prolongs QTc in healthy Chinese volunteers: A randomized, single-blind, crossover study. *Acta Pharmacologica Sinica* **36(4)**, 448-453 (2015). https://doi.org/10.1038/aps.2014.153
- 49 Inghammar, M., Svanstrom, H., Melbye, M., Pasternak, B. & Hviid, A. Oral fluoroquinolone use and serious arrhythmia: bi-national cohort study. *BMJ* **352**, i843 (2016). https://doi.org:10.1136/bmj.i843
- 50 Stancampiano, F. F. *et al.* Rare Incidence of Ventricular Tachycardia and Torsades de Pointes in Hospitalized Patients With Prolonged QT Who Later Received Levofloxacin: A Retrospective Study. *Mayo Clin. Proc.* **90**, 606-612 (2015). https://doi.org:10.1016/j.mayocp.2015.02.011
- 51 Cho, Y. & Park, H. S. Association of oral ciprofloxacin, levofloxacin, ofloxacin and moxifloxacin with the risk of serious ventricular arrhythmia: a nationwide cohort study in Korea. *BMJ Open* **8**, e020974 (2018). https://doi.org:10.1136/bmjopen-2017-020974

- 52 Chou, H. W. *et al.* Risks of cardiac arrhythmia and mortality among patients using new-generation macrolides, fluoroquinolones, and beta-lactam/beta-lactamase inhibitors: a Taiwanese nationwide study. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* **60**, 566-577 (2015). https://doi.org:10.1093/cid/ciu914
- 53 Aspinall, S. L. *et al.* Serious cardiovascular adverse events with fluoroquinolones versus other antibiotics: A self-controlled case series analysis. *Pharmacol Res Perspect* **8**, e00664 (2020). https://doi.org:10.1002/prp2.664
- 54 Postma, D. F. *et al.* Cardiac events after macrolides or fluoroquinolones in patients hospitalized for community-acquired pneumonia: post-hoc analysis of a cluster-randomized trial. *BMC Infect Dis* **19**, 17 (2019). https://doi.org:10.1186/s12879-018-3630-7
- 55 Rao, G. A. *et al.* Azithromycin and levofloxacin use and increased risk of cardiac arrhythmia and death. *Ann Fam Med* **12**, 121-127 (2014). https://doi.org:10.1370/afm.1601
- 56 Saad, N. A., Elberry, A. A., Samy Matar, H. & Hussein, R. R. S. Effect of ciprofloxacin vs levofloxacin on QTc-interval and dysglycemia in diabetic and non-diabetic patients. *Int. J. Clin. Pract.* **75**, e14072 (2021). https://doi.org:10.1111/ijcp.14072
- 57 Polgreen, L. A. *et al.* Estimated Cardiac Risk Associated With Macrolides and Fluoroquinolones Decreases Substantially When Adjusting for Patient Characteristics and Comorbidities. *J Am Heart Assoc* 7 (2018). https://doi.org:10.1161/JAHA.117.008074
- 58 Ellenardottir, V. *et al.* Fluoroquinolones do not provide added risk of out-of-hospital cardiac arrest: a nationwide study. *Open Heart* **11** (2024). https://doi.org:10.1136/openhrt-2023-002520
- 59 Carino, D., Zafar, M. A., Singh, M., Ziganshin, B. A. & Elefteriades, J. A. Fluoroquinolones and Aortic Diseases: Is There a Connection. *Aorta (Stamford)* 7, 35-41 (2019). https://doi.org:10.1055/s-0039-1693468
- 60 Chen, S. W. *et al.* Effects of Fluoroquinolones on Outcomes of Patients With Aortic Dissection or Aneurysm. *J. Am. Coll. Cardiol.* **77**, 1875-1887 (2021). https://doi.org:10.1016/j.jacc.2021.02.047
- 61 Chen, S. W. *et al.* Fluoroquinolones and Risk of Aortic Aneurysm or Dissection in Patients With Congenital Aortic Disease and Marfan Syndrome. *Circ J* 87, 1164-1172 (2023). https://doi.org:10.1253/circj.CJ-22-0682
- 62 Lawaetz Kristensen, K., Hallas, J. & Sanddal Lindholt, J. Fluoroquinolones as a trigger for rupture of abdominal aortic aneurysm: A case-crossover analysis. *Basic Clin Pharmacol Toxicol* **129**, 44-51 (2021). https://doi.org:10.1111/bcpt.13591
- 63 Maumus-Robert, S. *et al.* Risk of Intracranial Aneurysm and Dissection and Fluoroquinolone Use: A Case-Time-Control Study. *Stroke* **51**, 994-997 (2020). https://doi.org:10.1161/STROKEAHA.119.028490
- 64 Newton, E. R., Akerman, A. W., Strassle, P. D. & Kibbe, M. R. Association of Fluoroquinolone Use With Short-term Risk of Development of Aortic Aneurysm. *JAMA Surg* **156**, 264-272 (2021). https://doi.org:10.1001/jamasurg.2020.6165
- 65 Brown, J. P. *et al.* Association Between Fluoroquinolone Use and Hospitalization With Aortic Aneurysm or Aortic Dissection. *JAMA Cardiol* **8**, 865-870 (2023). https://doi.org:10.1001/jamacardio.2023.2418
- 66 Chen, Y. Y. *et al.* Association Between Aortic Aneurysm and Aortic Dissection With Fluoroquinolones Use in Patients With Urinary Tract Infections: A Population-Based Cohort Study. *J Am Heart Assoc* 11, e023267 (2022). https://doi.org:10.1161/JAHA.121.023267

- 67 Gopalakrishnan, C. *et al.* Association of Fluoroquinolones With the Risk of Aortic Aneurysm or Aortic Dissection. *JAMA Intern Med* **180**, 1596-1605 (2020). https://doi.org:10.1001/jamainternmed.2020.4199
- 68 Lundstrom, K. J., Garmo, H., Gedeborg, R., Stattin, P. & Styrke, J. Short-term ciprofloxacin prophylaxis for prostate biopsy and risk of aortic aneurysm. Nationwide, population-based cohort study. *Scand J Urol* **55**, 221-226 (2021). https://doi.org:10.1080/21681805.2021.1916072
- 69 Garg, M. *et al.* Oral fluoroquinolones and risk of aortic aneurysm or dissection: A nationwide population-based propensity score-matched cohort study. *Pharmacotherapy* **43**, 883-893 (2023). https://doi.org:10.1002/phar.2841
- 70 Lee, C. C. *et al.* Risk of Aortic Dissection and Aortic Aneurysm in Patients Taking Oral Fluoroquinolone. *JAMA Intern Med* **175**, 1839-1847 (2015). https://doi.org:10.1001/jamainternmed.2015.5389
- 71 Huh, K., Kang, M. & Jung, J. Lack of association between fluoroquinolone and aortic aneurysm or dissection. *Eur. Heart J.* **44**, 4476-4484 (2023). https://doi.org:10.1093/eurheartj/ehad627
- 72 Pasternak, B., Inghammar, M. & Svanstrom, H. Fluoroquinolone use and risk of aortic aneurysm and dissection: nationwide cohort study. *BMJ* **360**, k678 (2018). https://doi.org:10.1136/bmj.k678
- 73 Son, N., Choi, E., Chung, S. Y., Han, S. Y. & Kim, B. Risk of aortic aneurysm and aortic dissection with the use of fluoroquinolones in Korea: a nested case-control study. *BMC Cardiovasc Disord* **22**, 44 (2022). https://doi.org:10.1186/s12872-022-02488-x
- 74 Dong, Y. H. *et al.* Association of Infections and Use of Fluoroquinolones With the Risk of Aortic Aneurysm or Aortic Dissection. *JAMA Intern Med* **180**, 1587-1595 (2020). https://doi.org:10.1001/jamainternmed.2020.4192
- 75 Chen, C. *et al.* Do fluoroquinolones increase aortic aneurysm or dissection incidence and mortality? A systematic review and meta-analysis. *Front Cardiovasc Med* **9**, 949538 (2022). https://doi.org:10.3389/fcvm.2022.949538
- 76 Dai, X. C. *et al.* Relationship between fluoroquinolones and the risk of aortic diseases: a meta-analysis of observational studies. *BMC Cardiovasc Disord* **20**, 49 (2020). https://doi.org:10.1186/s12872-020-01354-y
- 77 Fatima, K. *et al.* Fluoroquinolones and the risk of aortic aneurysm or aortic dissection: an updated systematic review and meta-analysis including 53,651,283 patients. *Minerva Cardiol Angiol* **71**, 485-493 (2023). https://doi.org:10.23736/S2724-5683.22.06124-5
- 78 Lai, C. C., Wang, Y. H., Chen, K. H., Chen, C. H. & Wang, C. Y. The Association between the Risk of Aortic Aneurysm/Aortic Dissection and the Use of Fluroquinolones: A Systematic Review and Meta-Analysis. *Antibiotics (Basel)* **10** (2021). https://doi.org:10.3390/antibiotics10060697
- 79 Wee, I. *et al.* The association between fluoroquinolones and aortic dissection and aortic aneurysms: a systematic review and meta-analysis. *Sci Rep* **11**, 11073 (2021). https://doi.org:10.1038/s41598-021-90692-8
- 80 Hedenmalm, K. & Spigset, O. Peripheral sensory disturbances related to treatment with fluoroquinolones. *J Antimicrob Chemother* **37**, 831-837 (1996). https://doi.org:10.1093/jac/37.4.831
- 81 Huruba, M., Farcas, A., Leucuta, D. C., Bucsa, C. & Mogosan, C. A VigiBase Descriptive Study of Fluoroquinolone-Associated Peripheral Nervous System Disorders. *Pharmaceuticals (Basel)* **15** (2022). https://doi.org:10.3390/ph15020143
- 82 Suchy, W., Bus, Z., Krol, M. & Dykas, K. Adverse Reactions to Fluoroquinolones Focus on Tendinopathy, QT Prolongation, and Neuropathy: A Review. *International Journal of*

- *Pharmaceutical and Phytopharmacological Research (eIJPPR)* **14**, 23-35 (2024). https://doi.org/https://doi.org/10.51847/HHoSB9BTtW
- 83 Anwar, A. I. *et al.* Fluoroquinolones: Neurological Complications and Side Effects in Clinical Practice. *Cureus* **16**, e54565 (2024). https://doi.org:10.7759/cureus.54565
- 84 Ellis, D. E. *et al.* Comparative neurological safety of fluoroquinolones versus therapeutic alternatives. *Pharmacoepidemiol Drug Saf* **30**, 797-805 (2021). https://doi.org:10.1002/pds.5219
- 85 Etminan, M., Brophy, J. M. & Samii, A. Oral fluoroquinolone use and risk of peripheral neuropathy: a pharmacoepidemiologic study. *Neurology* **83**, 1261-1263 (2014). https://doi.org:10.1212/WNL.0000000000000846
- 86 Morales, D. *et al.* Association Between Peripheral Neuropathy and Exposure to Oral Fluoroquinolone or Amoxicillin-Clavulanate Therapy. *JAMA Neurol* **76**, 827-833 (2019). https://doi.org:10.1001/jamaneurol.2019.0887
- 87 Brown, J. P. *et al.* Systemic Fluoroquinolone Use and Risk of Uveitis or Retinal Detachment. *JAMA Ophthalmol* **142**, 636-645 (2024). https://doi.org:10.1001/jamaophthalmol.2024.1712
- 88 Eftekhari, K. *et al.* Risk of retinal tear or detachment with oral fluoroquinolone use: a cohort study. *Pharmacoepidemiol Drug Saf* **23**, 745-752 (2014). https://doi.org:10.1002/pds.3623
- 89 Etminan, M., Forooghian, F., Brophy, J. M., Bird, S. T. & Maberley, D. Oral fluoroquinolones and the risk of retinal detachment. *JAMA* **307**, 1414-1419 (2012). https://doi.org:10.1001/jama.2012.383
- 90 Fife, D., Zhu, V., Voss, E., Levy-Clarke, G. & Ryan, P. Exposure to oral fluoroquinolones and the risk of retinal detachment: retrospective analyses of two large healthcare databases. *Drug Saf.* **37**, 171-182 (2014). https://doi.org:10.1007/s40264-014-0138-y
- 91 Kapoor, K. G., Hodge, D. O., St Sauver, J. L. & Barkmeier, A. J. Oral fluoroquinolones and the incidence of rhegmatogenous retinal detachment and symptomatic retinal breaks: a population-based study. *Ophthalmology* **121**, 1269-1273 (2014). https://doi.org:10.1016/j.ophtha.2013.12.006
- 92 Pasternak, B., Svanstrom, H., Melbye, M. & Hviid, A. Association between oral fluoroquinolone use and retinal detachment. *JAMA* **310**, 2184-2190 (2013). https://doi.org:10.1001/jama.2013.280500
- 93 Baek, Y. H. *et al.* Signal Detection Between Fluoroquinolone Use and the Risk of Rhegmatogenous Retinal Detachment: Sequence Symmetry Analysis Using Nationwide South Korean Healthcare Database Between 2004 and 2015. *Clin Drug Investig* **38**, 1179-1188 (2018). https://doi.org:10.1007/s40261-018-0708-3
- 94 Kuo, S. C. *et al.* Association between recent use of fluoroquinolones and rhegmatogenous retinal detachment: a population-based cohort study. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* **58**, 197-203 (2014). https://doi.org:10.1093/cid/cit708
- 95 Raguideau, F., Lemaitre, M., Dray-Spira, R. & Zureik, M. Association Between Oral Fluoroquinolone Use and Retinal Detachment. *JAMA Ophthalmol* **134**, 415-421 (2016). https://doi.org:10.1001/jamaophthalmol.2015.6205
- 96 Shin, J. Y. *et al.* The risk profile of rhegmatogenous retinal detachment before and after using a fluoroquinolone: a 12 year nationwide self-controlled case series study. *J Antimicrob Chemother* **73**, 3442-3453 (2018). https://doi.org:10.1093/jac/dky336
- 97 Taher, M. K. *et al.* Systemic quinolones and risk of retinal detachment III: a nested case-control study using a US electronic health records database. *Eur. J. Clin. Pharmacol.* **78**, 1019-1028 (2022). https://doi.org:10.1007/s00228-021-03260-4

- 98 Alves, C., Penedones, A., Mendes, D. & Batel Marques, F. A systematic review and metaanalysis of the association between systemic fluoroquinolones and retinal detachment. *Acta Ophthalmol* **94**, e251-259 (2016). https://doi.org:10.1111/aos.12931
- 99 Chui, C. S., Wong, I. C., Wong, L. Y. & Chan, E. W. Association between oral fluoroquinolone use and the development of retinal detachment: a systematic review and meta-analysis of observational studies. *J Antimicrob Chemother* **70**, 971-978 (2015). https://doi.org:10.1093/jac/dku507
- 100 Chou, H. W. *et al.* Risk of severe dysglycemia among diabetic patients receiving levofloxacin, ciprofloxacin, or moxifloxacin in Taiwan. *Clin. Infect. Dis.* **57(7)**, 971-980 (2013). https://doi.org/10.1093/cid/cit439
- Dimakos, J. *et al.* Fluoroquinolones and the risk of severe hypoglycaemia among sulphonylurea users: Population-based cohort study. *Diabetes, Obesity and Metabolism* **26(8)**, 3088-3098 (2024). https://doi.org:https://dx.doi.org/10.1111/dom.15627
- Ellis, D. E. *et al.* Comparative risk of serious hypoglycemia among persons dispensed a fluoroquinolone versus a non-fluoroquinolone antibiotic. *Diabetes Res. Clin. Pract.* **185**, 109225 (2022). https://doi.org:10.1016/j.diabres.2022.109225
- Juhl, C. R. *et al.* A randomized, double-blind, crossover study of the effect of the fluoroquinolone moxifloxacin on glucose levels and insulin sensitivity in young men and women. *Diabetes, Obesity and Metabolism* **25(1)**, 98-109 (2023). https://doi.org/https://dx.doi.org/10.1111/dom.14851
- Liao, S. H. *et al.* Risk for hypoglycemic emergency with levofloxacin use, a population-based propensity score matched nested case-control study. *PLoS One* **17**, e0266471 (2022). https://doi.org:10.1371/journal.pone.0266471
- Althaqafi, A., Ali, M., Alzahrani, Y., Ming, L. C. & Hussain, Z. How Safe are Fluoroquinolones for Diabetic Patients? A Systematic Review of Dysglycemic and Neuropathic Effects of Fluoroquinolones. *Ther Clin Risk Manag* 17, 1083-1090 (2021). https://doi.org:10.2147/TCRM.S284171