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Response/Recommendation: Based on available data, nanostructured titanium alloys such 

as Ti-13Nb-13Zr and magnesium-based alloys doped with antimicrobial elements show 

potential to resist biofilm formation in orthopedic implants. 
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Rationale: Orthopedic implants have revolutionized healthcare by restoring function and 

mobility to patients suffering from musculoskeletal disorders. Among the materials employed, 

titanium (Ti) and its alloys dominate due to their exceptional mechanical properties, corrosion 

resistance, and biocompatibility. However, implant-associated infections remain a critical 

issue, necessitating innovative strategies to impart antimicrobial properties to these materials 

[1]. Thus, a variety of implant alloys are present on the market, the most common implant 

alloys are titanium based such as Ti6Al4V, titanium grade CP4 and tiMo15, Cobalt chromium 

alloys and stainless steel [2]. There are also efforts to introduce a variety of new implant alloys 

like magnesium alloys, tantalum alloys, zirconium alloys and mostly ceramic derivatives [3].  

To answer this question a comprehensive literature search was conducted using the search 

words “novel alloys” or ”coated materials, biocompatible”or “nanotubes” or “nanostructures” 

and “orthopedic implant” or “prosthesis-related infections” or “Orthopedic infection” or 

“endoprosthetic  joint infections” or “periprosthetic joint infection” or “orthopedic procedures” 

and “antibiofilm” or “anti-biofilm” or ”resistance” or “anti-bacterial agents” within PubMed 

and Embase, which initially identified 95 potentially relevant unique studies, screened by two 

independent reviewers, of which 41 were selected for full-text review and 41 were included for 

evaluation.  

 

Developments in implant alloys 

Titanium based implants 

Widely regarded as the standard for orthopedic implants, Ti-6Al-4V combines high strength 

with corrosion resistance [4]. The alloy exhibits a high strength-to-weight ratio, with a tensile 

strength of approximately 900 MPa and a density of about 4.4 g/cm³, making it significantly 

lighter than cobalt-chromium alloys while still providing substantial mechanical strength [5]. 

Corrosion resistance is another critical property of this material, and the formation of a stable 

and adherent titanium dioxide (TiO₂) passive layer upon exposure to physiological 

environments greatly enhances its resistance to oxidation and corrosion. This passive layer is 

crucial, as it mitigates the risk of ion release and its associated cytotoxic effects [6]. 

It is extensively used in joint replacements, spinal implants, and dental prostheses due to its 

favorable mechanical properties and ability to integrate with bone. Another important 

characteristic of titanium alloys is their biocompatibility, which stems from their ability to 

induce favorable biological responses upon implantation [7]. The osseointegration process, 

where bone cells integrate with the implant surface, is vital for the long-term success of joint 

replacements. Studies have demonstrated that titanium and its alloys exhibit optimal cellular 

responses, facilitating the proliferation and differentiation of osteoblasts, the cells responsible 



for bone formation [8,9,10]. The elasticity modulus of titanium alloys is approximately 110 

GPa, which is notably lower than that of traditional materials such as stainless steel (210 GPa) 

[11]. This lower modulus reduces stress shielding effects, wherein the bone is subjected to 

reduced mechanical loading, potentially leading to bone resorption around the implant. By 

more closely matching the mechanical properties of human bone, titanium alloys help maintain 

optimal bone health and loading conditions [12].  

Vanadium-free alternative to Ti-6Al-4V, primarily alloyed with elements like Nb, Zr, Mo, and 

Ta [13]. Specifically Ti-6Al-7Nb replaces vanadium with niobium, enhancing biocompatibility 

while maintaining high strength and corrosion resistance [14]. Research indicates that this alloy 

reduces cytotoxic effects associated with vanadium, making it a safer option for long-term 

implantation [15]. Recent studies highlight its ability to integrate well with bone, particularly 

when combined with antibacterial surface treatments such as silver or zinc coatings [16]. 

Characterized by its low elastic modulus, Ti-13Nb-13Zr minimizes stress shielding, a 

phenomenon where high stiffness of the implant results in bone resorption [17]. This alloy’s 

compatibility with bone tissue has been extensively documented, with evidence supporting its 

use in load-bearing applications. However, while its biocompatibility is exceptional, 

antibacterial properties are limited [18]. After equal channel angular swaging of Ti13Nb13Zr 

a nanostructured material was gained which led to an further reduction of bacterial cell counts 

[19]. Commercially pure titanium (CP-Ti) is widely used in dental and orthopedic implants due 

to its high corrosion resistance and moderate strength. CP-Ti (Grade 2) is particularly noted for 

its ductility, while CP-Ti (Grade 4) provides greater strength, making it suitable for more 

demanding applications [4]. Both grades promote osseointegration, with treatments such as 

plasma spraying and hydroxyapatite coatings further enhancing their integration with bone 

tissue [20]. Despite these advantages, their lack of inherent antibacterial activity necessitates 

the application of antimicrobial coatings or drug-loaded systems [1]. Emerging alloys such as 

Ti-15Mo-5Zr-3Al and Ti-12Mo-6Zr-2Fe demonstrate strong potential for orthopedic 

applications due to their superior mechanical properties and corrosion resistance. Ti-15Mo, for 

instance, has excellent biocompatibility and osseointegration capabilities when surface-

modified with nanoscale roughness [21]. However, comprehensive studies evaluating their 

antibacterial properties are still needed to confirm their efficacy in reducing bacterial 

colonization.  

Magnesium based implants 

Magnesium (Mg) alloys have gained attention for their biodegradability and biocompatibility, 

while recent research has focused on enhancing their antimicrobial properties. Magnesium 

exhibited antimicrobial properties due to the increasing pH in the surrounding environment 

[22]. While magnesium only reduces the bacterial count, incorporation of antimicrobial 

elements or agents like Cu, Ag, and tannic acids can introduce greater efficiency in inhibiting 

biofilm formation [23]. In addition, Mishra et al. (2024) explored alloying and coating 

strategies to improve the mechanical and corrosion resistance of magnesium implants, further 

enhancing their antimicrobial and osteoconductive properties [24]. 

Hydrogels containing magnesium phosphates also have potential in surgical decontamination 

of dental implants, effectively reducing peri-implantitis-associated infections [25]. 

Furthermore, the use of magnesium implants combined with alternating magnetic fields to 

enhance hydrogen release and proton depletion offers a novel approach for combating 

osteomyelitis by promoting bacterial eradication and tissue repair [26]. Lastly, composite 

materials like magnesium/poly lactic acid (Mg/PLA) blends have demonstrated improved 



antibacterial and anti-inflammatory properties during biodegradation, addressing infection-

related complications in bone healing applications [27]. 

Zinc based implants 

Zinc (Zn) is an essential element in the human body, and its alloys have been investigated for 

biomedical applications. Zinc possesses antimicrobial properties depending on the 

concentration present to the bacteria [28]. However, Zinc is able to reduce bacterial counts, by 

destroying the outer cell membrane [29].  Recently approaches have been made by doping Zn 

based implants with antimicrobial elements like Cu and Ag [30]. 

Cobalt-Chromium based implants 

CoCrMo alloys are widely used in orthopedic implants due to their mechanical strength and 

corrosion resistance. Surface modifications and alloy doping with Cu and Ag have been 

employed to enhance their biocompatibility and antimicrobial properties [31,32]. Different 

surface modifications on CoCrMo alloys affect cell viability and adhesion, highlighting the 

importance of surface engineering in improving implant performance [33]. 

Conclusion: 

Titanium and its alloys are indispensable in orthopedic applications due to their superior 

mechanical properties and biocompatibility. However, their lack of inherent antimicrobial 

properties necessitates innovative solutions to prevent infections. Strategies such as surface 

modifications, antimicrobial coatings, elemental doping, and drug-loaded coatings have the 

potential to enhance the antibacterial performance of these materials while supporting 

osseointegration. The most difficult aspect of in fighting PJI with novel alloys is to find a 

balance between biocompatibility and antimicrobial efficiency. The use of copper and silver 

has important influence on body health. The risk of developing cancer, Alzheimer’s, and other 

immune deficiencies are dependent on ion release to the human body [34, 35]. With implants, 

ion release occurs and can be difficult to control [36]. A promising approach to reduce bacterial 

counts is the use of nanostructured surfaces [37,38]. As nanoparticles can be used as coatings 

[39], nanostructured alloys produced using innovative manufacturing processes can ensure a 

sustained antimicrobial effect [40,41]. Continued research and development in this field is 

crucial for improving implant success rates and enhancing patient outcomes.  
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