HK47: Do the thresholds for serum and synovial tests used for the diagnosis of periprosthetic joint infection also apply to reimplantation?

Christoph Böhler, Jennifer Straub, Derek Amanatullah, Tiziana Ascione, Bernd Fink, Jason Jennings, Jay Lieberman, Valeri Murylev, James Powell, Jong-Keun Seon

Response/Recommendation: No. Based on limited data, the thresholds for serum and synovial tests used to diagnose periprosthetic joint infection (PJI) should not be used to determine the presence/absence of infection for reimplantation in patients undergoing two-stage exchange arthroplasty.

Level of Evidence: Weak

Delegate Vote:

Rationale:

A two-stage exchange procedure is widely regarded as the preferred surgical strategy for management of patients who have chronic periprosthetic joint infection (PJI), with reported success rates of up to 90% [1]. However, significant heterogeneity exists in how studies evaluate persistent PJI at reimplantation.

There were four studies retrospectively assessed the established serum **C-reactive protein** (**CRP**) threshold of 1 mg/dl at reimplantation via comparison against intraoperative microbiology, recurrence of PJI, and Delphi Criteria [2–5], with sensitivity from 17 to 67% and specificity from 40 to 82%. A wide variety of studies investigated optimal thresholds for serum CRP. They identified optimal cutoffs from 0.33 to 5.2 mg/dL. However, those that employed a threshold > one mg/dL demonstrated a trend towards increased specificity, rendering it potentially useful as a rule-in test [6–21].

When evaluating the standard **erythrocyte sedimentation rate** (**ESR**) threshold of 30 mm/hour at reimplantation, Lindsay et al. observed a sensitivity of 75% and a specificity of 100% in 21 cases, using recurrent infection after reimplantation as the outcome. However, Pannu et al. identified a sensitivity of 30% and specificity of 67% through retrospective analysis of 44 cases and comparison against Delph Criteria [4], while Ghanem et al. found a sensitivity of 65% and specificity of 32.4% when retrospectively applying the established threshold in 109 knees [2]. Ten other studies [6,9–15,21,22] identified optimal cutoffs based on varying outcome measures ranging from 29 mm/h (sensitivity: 64%, specificity: 88%) [14] to 102 mm/hour (sensitivity: 29%, specificity: 89%) [15], indicating an overall trend towards higher cutoffs at reimplantation.

None of the identified studies directly assessed the **standard d-dimer** threshold of 860 ng/mL, with optimal thresholds ranging from 600 to 3,070 ng/mL and no clear trend in sensitivity or specificity, leaving its value at reimplantation unclear [4,10,13,14,23–26].

Regarding synovial **white blood cells (WBCs)**, no study directly assessed the established cutoff, but six of them identified thresholds below the standard of 3,000 cells/ μ L, most of which used intraoperative cultures as an outcome measure for failure [8,9,11,12,15,27–31]. Seven out of the ten studies report cutoff values below the current standard for initial diagnosis, ranging from 640 [12] to 2,733 cells/ μ L [29] with variable diagnostic performance. Further, Boelch et al. found noteworthy differences in synovial WBC cutoff when comparing against histology for

polymorphonuclear (PMN) cells (3,250 cells/ μ L) or intraoperative tissue culture (4,450 cells/ μ l) in 94 revision knees [30].

Similar to WBCs, optimal **PMN%** thresholds in literature all range below the established >80% limit when compared against a variety of outcome measures. These results indicate a possible need for lowering limits at reimplantation[9,11,12,15,25,27,29,31]. Thresholds ranged from 52% (sensitivity 82%, specificity 78%) in a study from Ascione et al. [31] to 79% (sensitivity 78%, specificity 82%) identified by Kusuma et al. [9], with consistently good diagnostic performance. However, due to the heterogeneity of outcome measures, no definitive recommendation or cutoff could be established.

When assessing **cultures of aspirated synovial fluid**, a single positive culture sample was generally considered a positive test result, and in most studies compared against intraoperative microbiology and/or histology or MSIS criteria. Throughout all identified studies, specificity was consistently much higher than sensitivity with values ranging from 85 to 100%, indicating its potential as a rule in tests with at least one positive sample as the threshold [8,27,28,30,32–35].

Recently, a study by Li et al. was the first one to prospectively assess **synovial CRP** at reimplantation. They identified a reasonably high sensitivity of 78% and specificity of 89% at a threshold of 0.89 mg/dL when comparing it against the emergence of a new sinus tract infection or positive cultures as an outcome [19]. However, further evidence is needed to fully support this threshold as opposed to the established 0.68 mg/dL [36].

There were three studies that evaluated the diagnostic value of **leukocyte esterase strips** at reimplantation, all interpreting grades >+ as positive per the current MSIS criteria [36]. Through prospective comparison against treatment failure after one year, as defined by the Delphi Consensus, Bielefeld et al. found a negative leukocyte esterase result in all 18 patients, yielding a sensitivity of 0% and a specificity of 100% [17]. Kheir et al. retrospectively applied the same threshold and endpoint and found a sensitivity of 26% and specificity of 100% at a mean follow-up of just under two years in 77 patients [22]. A third study by Logoluso et al. showed an outstanding sensitivity of 82% and specificity of 99% through comparison against MSIS criteria at reimplantation or PJI recurrence at a minimum follow-up of 16 months [18]. Although these studies suggest that the previously established threshold for leukocyte esterase strips may be reasonable for reimplantation, further research is needed to confirm its reliability and optimize diagnostic accuracy.

In terms of **synovial alpha-defensin**, divergent evidence exists when compared against (modified) 2018 MSIS criteria at reimplantation, with Stone et al. reporting a 71% sensitivity [37], while Owens et al. found 0% sensitivity [38], both showing near-perfect specificity. When assessed for failure after at least one year, three studies comparing synovial alpha-defensin to the Delphi Consensus showed extremely low sensitivity but almost absolute specificity [17,39,40]. Thus, its clinical utility at reimplantation cannot be supported based on current evidence.

A recent systematic review and meta-analysis by Sabater-Martos et al. [41] assessed 24 studies regarding positive **intraoperative cultures** at reimplantation and subsequent failure. The number of reported samples ranged from one to eight, and one positive culture was considered a positive result at reimplantation in the vast majority of studies as defined in the postoperative section of the 2018 MSIS criteria [36]. The overall risk of failure with positive cultures was significantly higher in the antibiotic holiday group (i.e., group pausing antibiotics before reimplantation, odds ratio (OR) of 4.8) as well as the non-holiday group (OR 2.2). However, studies directly assessing the optimal number of samples needed are still required to fully support this evidence.

The Feldman criterion (\geq five PMN in \geq five high-power fields) is currently used by both the MSIS and EBJIS criteria as the standard for **intraoperative histology** [36,42]. Using it, Bori et al. demonstrated a sensitivity of 29% and specificity of 100% when compared to positive intraoperative microbiology as the gold standard. Alternatively, the application of the Athanasou criterion (\geq one PMN per high-power field, on average, in 10 fields) showed a shift towards increased sensitivity (71%) and lowered specificity (64%) in the same cohort [43]. Two other studies also found low sensitivity (0 to 38%) and high specificity (83 to 91%) with the Feldman criterion compared to infection recurrence [44,45]. George et al. considered intraoperative frozen sections as positive if \geq five PMN were seen in \geq three high-power fields, resulting in a sensitivity of 59% and specificity of 94% in comparison to the MSIS criteria at reimplantation [46]. Further, Straub et al. found a sensitivity of 29% and specificity of 76% with a cutoff of \geq 23 PMN per ten high-power fields and treatment failure defined as tier 3B or 3D according to the MSIS reporting tool [47]. In total, no cutoff can be fully supported, with the previous ones primarily useful for ruling in infection.

In a study by Nelson et al., **sonication cultures** were performed on 36 patients who had a sensitivity of 82% and specificity of 50% with an average antibiotic-free duration before reimplantation of seven weeks. When considering only sonication results with more than 20 colony-forming units as positive, the sensitivity decreased to 63% and the specificity increased to 78%, respectively [48]. Another study by Sorli et al. applied a threshold of at least five colony-forming units in 55 patients, but did not report sensitivities or specificities [49]. Similarly, a study by Bereza et al. [32] assessed sonication results, but neither reported colony-forming unit cutoffs nor sensitivity and specificity.

Therefore, thresholds established at explantation cannot be fully supported at reimplantation due to variability in diagnostic performance and lack of standardization across studies [50]. The established serum and synovial test thresholds for the diagnosis of PJI showed lower overall performance at reimplantation in 2-stage revision. While some thresholds, such as those for CRP, ESR, or synovial WBC may provide insights, they show inconsistent sensitivity and specificity across studies. Although some established thresholds seem beneficial for ruling in infection, their clinical relevance is highly diminished by the lack of standardization in study protocols, antibiotic management, and outcome measures, making it difficult to recommend specific cutoffs.

References:

- 1. Kildow BJ, Della-Valle CJ, Springer BD. Single vs 2-Stage Revision for the Treatment of Periprosthetic Joint Infection. J Arthroplasty. 2020;35: S24–S30.
- 2. Ghanem E, Azzam K, Seeley M, Joshi A, Parvizi J. Staged Revision for Knee Arthroplasty Infection: What Is the Role of Serologic Tests Before Reimplantation? Clinical Orthopaedics & Related Research. 2009;467: 1699–1705.
- 3. Lindsay CP, Olcott CW, Del Gaizo DJ. ESR and CRP are useful between stages of 2-stage revision for periprosthetic joint infection. Arthroplast Today. 2017;3: 183–186.
- 4. Pannu TS, Villa JM, Engh C 3rd, Patel A, Levine BR, Piuzzi NS, et al. Plasma D-dimer Does Not Anticipate the Fate of Reimplantation in Two-stage Exchange Arthroplasty for Periprosthetic Joint Infection: A Preliminary Investigation. Clin Orthop Relat Res. 2021;479:

- 5. Schindler M, Christofilopoulos P, Wyssa B, Belaieff W, Garzoni C, Bernard L, et al. Poor performance of microbiological sampling in the prediction of recurrent arthroplasty infection. Int Orthop. 2011;35: 647–654.
- 6. George J, Jawad M, Curtis GL, Samuel LT, Klika AK, Barsoum WK, et al. Utility of Serological Markers for Detecting Persistent Infection in Two-Stage Revision Arthroplasty in Patients With Inflammatory Arthritis. J Arthroplasty. 2018;33: S205–S208.
- 7. Hoell S, Borgers L, Gosheger G, Dieckmann R, Schulz D, Gerss J, et al. Interleukin-6 in two-stage revision arthroplasty: what is the threshold value to exclude persistent infection before re-implanatation? Bone Joint J. 2015;97-B: 71–75.
- 8. Hoell S, Moeller A, Gosheger G, Hardes J, Dieckmann R, Schulz D. Two-stage revision arthroplasty for periprosthetic joint infections: What is the value of cultures and white cell count in synovial fluid and CRP in serum before second stage reimplantation? Arch Orthop Trauma Surg. 2016;136: 447–452.
- 9. Kusuma SK, Ward J, Jacofsky M, Sporer SM, Della Valle CJ. What is the role of serological testing between stages of two-stage reconstruction of the infected prosthetic knee? Clin Orthop Relat Res. 2011;469: 1002–1008.
- 10. Li H, Li R, Li LL, Chai W, Xu C, Chen J. The change of coagulation profile in two-staged arthroplasty for periprosthetic joint infection patients: a retrospective cohort study. J Orthop Surg Res. 2021;16: 319.
- 11. Shukla SK, Ward JP, Jacofsky MC, Sporer SM, Paprosky WG, Della Valle CJ. Perioperative testing for persistent sepsis following resection arthroplasty of the hip for periprosthetic infection. J Arthroplasty. 2010;25: 87–91.
- 12. Zmistowski BM, Clyde CT, Ghanem ES, Gotoff JR, Deirmengian CA, Parvizi J. Utility of Synovial White Blood Cell Count and Differential Before Reimplantation Surgery. J Arthroplasty. 2017;32: 2820–2824.
- 13. Tarabichi S, Goh GS, Fernández-Rodríguez D, Baker CM, Lizcano JD, Parvizi J. Plasma D-Dimer Is a Promising Marker to Guide Timing of Reimplantation: A Prospective Cohort Study. J Arthroplasty. 2023;38: 2164–2170.e1.
- 14. Shao H, Bian T, Zhou Y, Huang Y, Song Y, Yang D. Which serum markers predict the success of reimplantation after periprosthetic joint infection? J Orthop Traumatol. 2022;23: 45.
- 15. Seetharam A, Dilley JE, Meneghini RM, Kheir MM. Diagnostic utility and thresholds for commonly obtained serum and synovial markers prior to reimplantation in periprosthetic joint infection. J Arthroplasty. 2023;38: 1356–1362.
- 16. Benda S, Mederake M, Schuster P, Fink B. Diagnostic value of C-reactive protein and serum white blood cell count during septic two-stage revision of total knee arthroplasties.

- 17. Bielefeld C, Engler H, JÄger M, Wegner A, Wassenaar D, Busch A. Synovial alphadefensin at reimplantation in two-stage revision arthroplasty to rule out persistent infection. In Vivo. 2021;35: 1073–1081.
- 18. Logoluso N, Pellegrini A, Suardi V, Morelli I, Battaglia AG, D'Anchise R, et al. Can the leukocyte esterase strip test predict persistence of periprosthetic joint infection at second-stage reimplantation? J Arthroplasty. 2022;37: 565–573.
- 19. Li F, Zhou H, Yang Y, Yang J, Wang H, Hu N. Diagnostic and predictive efficacy of synovial fluid versus serum C-reactive protein levels for periprosthetic joint infection and reimplantation success. J Arthroplasty. 2024;39: 1932–1938.
- 20. Mederake M, Hofmann UK, Benda S, Schuster P, Fink B. Diagnostic Value of CRP and Serum WBC Count during Septic Two-Stage Revision of Total Hip Arthroplasties. Antibiotics (Basel). 2022;11. doi:10.3390/antibiotics11081098
- 21. Johnson NR, Rowe TM, Valenzeula MM, Scarola GT, Fehring TK. Do pre-reimplantation erythrocyte sedimentation rate/C-reactive protein cutoffs guide decision-making in prosthetic joint infection? Are we flying blind? J Arthroplasty. 2022;37: 347–352.
- 22. Kheir MM, Ackerman CT, Tan TL, Benazzo A, Tischler EH, Parvizi J. Leukocyte Esterase Strip Test Can Predict Subsequent Failure Following Reimplantation in Patients With Periprosthetic Joint Infection. J Arthroplasty. 2017;32: 1976–1979.
- 23. Xu C, Qu P-F, Chai W, Li R, Chen J-Y. Plasma fibrinogen may predict persistent infection before reimplantation in two-stage exchange arthroplasty for periprosthetic hip infection. J Orthop Surg Res. 2019;14: 133.
- 24. Tsantes AG, Papadopoulos DV, Goumenos S, Trikoupis IG, Tsante KA, Koutserimpas C, et al. Rotational thromboelastometry as a diagnostic tool for persistent infection in two-stage exchange arthroplasty. J Clin Med. 2024;13: 1942.
- 25. Ascione T, Balato G, Festa E, Pandolfo G, Siciliano R, Pagliano P. Ideal timing of reimplantation in patients with periprosthetic knee infection undergoing 2-stage exchange: A diagnostic scoring system: A diagnostic scoring system. J Bone Joint Surg Am. 2024;106: 984–991.
- 26. Shahi A, Kheir M, Tarabichi M, Hosseinzadeh H, Tan T, Parvizi J. Serum D-dimer test is promising for the diagnosis of periprosthetic joint infection and timing of reimplantation. J Bone Joint Surg Am. 2017;99: 1419–1427.
- 27. Newman JM, George J, Klika AK, Hatem SF, Barsoum WK, Trevor North W, et al. What is the diagnostic accuracy of aspirations performed on hips with antibiotic cement spacers? Clin Orthop Relat Res. 2017;475: 204–211.
- 28. Boelch SP, Weissenberger M, Spohn F, Rudert M, Luedemann M. Insufficient sensitivity

- of joint aspiration during the two-stage exchange of the hip with spacers. J Orthop Surg Res. 2018;13: 7.
- 29. Pannu TS, Villa JM, Corces A, Riesgo AM, Higuera CA. Synovial white blood cell count and differential to predict successful infection management in a two-stage revision. J Arthroplasty. 2022;37: 1159–1164.
- 30. Boelch SP, Roth M, Arnholdt J, Rudert M, Luedemann M. Synovial fluid aspiration should not be routinely performed during the two-stage exchange of the knee. Biomed Res Int. 2018;2018: 6720712.
- 31. Ascione T, Balato G, Mariconda M, Smeraglia F, Baldini A, De Franco C, et al. Synovial cell count before reimplantation can predict the outcome of patients with periprosthetic knee infections undergoing two-stage exchange. Clin Orthop Relat Res. 2021;479: 2061–2068.
- 32. Bereza P, Ekiel A, Auguściak-Duma A, Aptekorz M, Wilk I, Kusz D, et al. Comparison of cultures and 16S rRNA sequencing for identification of bacteria in two-stage revision arthroplasties: preliminary report. BMC Musculoskelet Disord. 2016;17: 138.
- 33. Macke C, Lenhof S, Graulich T, Örgel M, Omar-Pacha T, Stübig T, et al. Low diagnostic value of synovial aspiration culture prior to reimplantation in periprosthetic joint infection. In Vivo. 2021;35: 2409–2416.
- 34. Preininger B, Janz V, von Roth P, Trampuz A, Perka CF, Pfitzner T. Inadequacy of Joint Aspiration for Detection of Persistent Periprosthetic Infection During Two-Stage Septic Revision Knee Surgery. Orthopedics. 2017;40: 231–234.
- 35. Huguet S, Bernaus M, Gómez L, Cuchí E, Soriano A, Font-Vizcarra L. Role of joint aspiration before re-implantation in patients with a cement spacer in place. World J Orthop. 2022;13: 615–621.
- 36. Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C, Chen AF, et al. The 2018 Definition of Periprosthetic Hip and Knee Infection: An Evidence-Based and Validated Criteria. J Arthroplasty. 2018;33: 1309–1314.e2.
- 37. Stone WZ, Gray CF, Parvataneni HK, Prieto HA. Clinical evaluation of alpha defensin test following staged treatment of prosthetic joint infections. J Arthroplasty. 2019;34: 1446–1451.
- 38. Owens JM, Dennis DA, Abila PM, Johnson RM, Jennings JM. Alpha-defensin offers limited utility in work-up prior to reimplantation in chronic periprosthetic joint infection in total joint arthroplasty patients. J Arthroplasty. 2022;37: 2431–2436.
- 39. Samuel LT, Sultan AA, Kheir M, Villa J, Patel P, Parvizi J, et al. Positive alpha-defensin at reimplantation of a two-stage revision arthroplasty is not associated with infection at 1 year. Clin Orthop Relat Res. 2019;477: 1615–1621.
- 40. Carender CN, DeMik DE, Otero JE, Noiseux NO, Brown TS, Bedard NA. What is the clinical utility of synovial alpha defensin testing of antibiotic spacers before reimplantation? J

- 41. Sabater-Martos M, Boadas L, Trebše R, Grenho A, Sanz-Ruiz P, Marais LC, et al. Impact of positive cultures during the second stage of a two-stage exchange: Systematic review and meta-analysis. J Arthroplasty. 2024;39: 839–845.e15.
- 42. McNally M, Sousa R, Wouthuyzen-Bakker M, Chen AF, Soriano A, Vogely HC, et al. The EBJIS definition of periprosthetic joint infection. Bone Joint J. 2021;103-B: 18–25.
- 43. Bori G, Soriano A, García S, Mallofré C, Riba J, Mensa J. Usefulness of histological analysis for predicting the presence of microorganisms at the time of reimplantation after hip resection arthroplasty for the treatment of infection. J Bone Joint Surg Am. 2007;89: 1232–1237.
- 44. Qiao J, Xu C, Chai W, Hao L-B, Zhou Y, Fu J, et al. Positive frozen section during reimplantation increases the risk of treatment failure in two-stage exchange arthroplasty even in patients with normal ESR and CRP. Bone Joint J. 2021;103-B: 916–922.
- 45. Saitoh Y, Setoguchi T, Yoshioka T, Nishi J, Tanimoto A, Komiya S. Intraoperative evaluation of polymorphonuclear leukocyte during second-stage revision surgery promote overdiagnosis of persistent periprosthetic joint infection. Acta Orthop Traumatol Turc. 2018;52: 191–195.
- 46. George J, Kwiecien G, Klika AK, Ramanathan D, Bauer TW, Barsoum WK, et al. Are Frozen Sections and MSIS Criteria Reliable at the Time of Reimplantation of Two-stage Revision Arthroplasty? Clin Orthop Relat Res. 2016;474: 1619–1626.
- 47. Straub J, Staats K, Vertesich K, Kowalscheck L, Windhager R, Böhler C. Two-stage revision for periprosthetic joint infection after hip and knee arthroplasty. Bone Joint J. 2024;106-B: 372–379.
- 48. Nelson CL, Jones RB, Wingert NC, Foltzer M, Bowen TR. Sonication of antibiotic spacers predicts failure during two-stage revision for prosthetic knee and hip infections. Clin Orthop Relat Res. 2014;472: 2208–2214.
- 49. Sorlí L, Puig L, Torres-Claramunt R, González A, Alier A, Knobel H, et al. The relationship between microbiology results in the second of a two-stage exchange procedure using cement spacers and the outcome after revision total joint replacement for infection: the use of sonication to aid bacteriological analysis. The use of sonication to aid bacteriological analysis. J Bone Joint Surg Br. 2012;94: 249–253.
- 50. Khan IA, Boyd BO, Chen AF, Cortés-Penfield N, Myers TG, Brown TS, et al. Utility of diagnostic tests before reimplantation in patients undergoing 2-stage revision total joint arthroplasty: A systematic review and meta-analysis: A systematic review and meta-analysis. JBJS Rev. 2023;11: e22.00201.
- 51. Ascione T, Balato G, Pagliano P. Upcoming evidence in clinical practice of two-stage revision arthroplasty for prosthetic joint infection. J Orthop Traumatol. 2024;25: 26.

- 52. Mühlhofer HML, Knebel C, Pohlig F, Feihl S, Harrasser N, Schauwecker J, et al. Synovial aspiration and serological testing in two-stage revision arthroplasty for prosthetic joint infection: evaluation before reconstruction with a mean follow-up of twenty seven months. Int Orthop. 2018;42: 265–271.
- 53. Jiang Q, Xu C, Chai W, Zhou Y-G, Fu J, Chen J-Y. The 2018 new definition of periprosthetic joint infection is valuable for diagnosis of persistent infection at reimplantation in patients without synovial fluid. J Arthroplasty. 2021;36: 279–285.
- 54. Stambough JB, Curtin BM, Odum SM, Cross MB, Martin JR, Fehring TK. Does Change in ESR and CRP Guide the Timing of Two-stage Arthroplasty Reimplantation? Clin Orthop Relat Res. 2019;477: 364–371.
- 55. Jiang Q, Fu J, Chai W, Hao L-B, Zhou Y-G, Xu C, et al. Changes in serum markers failed to predict persistent infection after two-stage exchange arthroplasty. J Orthop Surg Res. 2020;15: 382.
- 56. Krueger JS, Ackmann T, Gosheger G, Moellenbeck B, Puetzler J, Theil C. The change of serum interleukin-6 fails to identify subsequent periprosthetic joint infection in patients who have two-stage revision for periprosthetic joint infection. J Arthroplasty. 2023;38: 2698–2703.
- 57. Lee S-H, Chu C-T, Chang C-H, Hu C-C, Chen S-Y, Lu T-W, et al. Do serum C-reactive protein trends predict treatment outcome in patients with knee periprosthetic joint infection undergoing two-stage exchange arthroplasty? Diagnostics (Basel). 2022;12: 1030.
- 58. Zhang Q, Ding B, Wu J, Dong J, Liu F. Sonication fluid culture of antibiotic-loaded bone cement spacer has high accuracy to confirm eradication of infection before reimplantation of new prostheses. J Orthop Surg Res. 2021;16: 377.
- 59. Olsen AS, Wilson A, O'Malley MJ, Urish KL, Klatt BA. Are sonication cultures of antibiotic cement spacers useful during second-stage reimplantation surgery for prosthetic joint infection? Clin Orthop Relat Res. 2018;476: 1986–1992.
- 60. Sambri A, Maso A, Storni E, Donati ME, Pederzoli A, Dallari D, et al. Is sonication of antibiotic-loaded cement spacers useful in two-stage revision of prosthetic joint infection? J Microbiol Methods. 2019;156: 81–84.
- 61. Mariconda M, Ascione T, Balato G, Rotondo R, Smeraglia F, Costa GG, et al. Sonication of antibiotic-loaded cement spacers in a two-stage revision protocol for infected joint arthroplasty. BMC Musculoskelet Disord. 2013;14: 193.
- 62. Wu H, Meng Z, Pan L, Liu H, Yang X, Yongping C. Plasma fibrinogen performs better than plasma d-dimer and fibrin degradation product in the diagnosis of periprosthetic joint infection and determination of reimplantation timing. J Arthroplasty. 2020;35: 2230–2236.
- 63. Xu C, Chai W, Chen J-Y. Can we rely on the combination of serological tests and frozen sections at the time of reimplantation for two-stage exchange hip arthroplasty in patients with a "dry tap"? J Orthop Surg Res. 2019;14: 184.

- 64. Shang G, Fei Z, Xu H, Wang Y, Xiang S. Globulin and albumin to globulin ratio precisely diagnose periprosthetic joint infection and determine the timing of second-stage reimplantation. J Orthop Surg Res. 2022;17: 12.
- 65. Frangiamore SJ, Siqueira MBP, Saleh A, Daly T, Higuera CA, Barsoum WK. Synovial Cytokines and the MSIS Criteria Are Not Useful for Determining Infection Resolution After Periprosthetic Joint Infection Explantation. Clin Orthop Relat Res. 2016;474: 1630–1639.