G72: Is there a role for sonication of implants obtained during revision surgery?

Adam M. Gordon MD, MBA¹, Dina Raafat PhD ^{2, 3, 4}, Stergios Lazarinis MD PhD ⁵, Maria

Eugenia Portillo ⁶, Elena De Vecchi ⁷, Peter Croughs⁸, Laura Ravera ⁹, Li Cao ¹⁰

1) Maimonides Medical Center, Department of Orthopaedic Surgery, Brooklyn, New York.

2) Institute of Immunology, University Medicine Greifswald, Greifswald, Germany

3) Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine

Greifswald, Germany

4) Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University,

Alexandria, Egypt

5) Uppsala University Hospital, Sweden

6) University Hospital of Navarra (HUN), Spain

7) Laboratory of Clinical Chemistry and Microbiology, IRCCS Ospedale Galeazzi-

Sant'Ambrogio

8) Erasmus University Rotterdam, Rotterdam, Netherlands

9) University Hospital of Turin

10) Department of Orthopedics, the First Afliated Hospital of Xinjiang

Medical University, Urumqi 830011, China

Response/Recommendation: The use of sonication of implants retrieved during revision

arthroplasty may present potential benefits in improving the detection of infective pathogens.

However, further research is needed to validate the efficacy of this technique.

Level of Evidence: Moderate

Delegate Vote:

Rationale:

Implant-related infections, including periprosthetic joint infections (PJIs), remain a significant

cause of failure and morbidity after orthopedic surgeries, particularly in the context of revision

procedures.[1, 2] Two-stage exchange arthroplasty is the most commonly employed treatment

1

protocol for chronic infection of total joint arthroplasties (TJAs). The diagnosis of PJIs is complicated by the presence of biofilms, which protect bacteria from conventional antibiotic therapies and immune responses.[3, 4] The ability to reliably identify the presence of biofilms on retrieved implants or cement (polymethyl methacrylate/PMMA) spacers can significantly impact patient management, including the decision to perform additional surgical procedures or to tailor the delivery of effective antibiotic therapy.

Sonication, which involves the use of high-frequency sound waves to dislodge adhered pathogens from surfaces, has gained attention as a potential tool for improving the detection of biofilms on implants or cement spacers.[5-15] Sonication of the implants retrieved during revision total joint arthroplasty is an option currently available, as an adjunct to tissue cultures to detect the adhered microorganisms that colonize the implants. [5-15] Studies indicate that sonication of explanted implants can increase the detection of pathogens and thus predict persistent infection compared to traditional intraoperative culture methods, which may fail to detect biofilm-related infections.[14, 16] Multiple studies have shown that sonication is as specific as, but more sensitive than, traditional cultures in detecting pathogens on orthopedic implants.[15, 17-22] Additionally, sonication of removed implants from patients undergoing revision surgery increased the detection of microbial growth, particularly in cases of PJI, where biofilm is attached but not identified via conventional methods. [15, 17-22]

The utilization of sonication as an adjunct to PJI diagnostics is reasonable. [23] Biofilm-related infections are notoriously difficult to treat due to the protection biofilms offer against antibiotics and the immune system. [3, 4] An accurate method to efficiently detect microbial growth and biofilm formation on implants after revision surgery is highly desirable to avoid placing a new prosthesis in an eventually infected environment. [24] The ability to more accurately identify potential infections during revision surgery has the advantage of guiding the surgeon to a more effective and targeted treatment, possibly leading to better patient outcomes. Studies have highlighted that the combination of sonication with tissue culture could improve the identification of infections that would otherwise have been assigned to aseptic revisions, enabling a more fitting antibiotic treatment and avoiding unnecessary surgical procedures. [25]

While sonication has shown promise in improving diagnostic accuracy, its role in routine clinical practice is not yet fully established.[26] In a meta-analysis of 12 studies, the pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio for detecting PJI by using sonication fluid cultures (SFC) were 0.82 (CI, 0.76 to 0.87), 0.94 (CI, 0.85 to 0.98), 14.2 (CI, 5.4 to 37.8), 0.19 (CI, 0.14 to 0.25), for joint arthroplasty.[14] Sonication techniques are not universally utilized and may require additional training and equipment. [27]Moreover, some studies suggest variability in its effectiveness depending on the type of implant, the pathogens involved, the specimen utilized for sonication (implant versus spacer) and the methods used for sonication. It has been reported that sonication works particularly well on detecting infections in certain types of metal implants, such as titanium or chrome cobalt, but has been less effective for others, such as ceramic, cement spacers, or other composite materials. [28]

Additionally, while sonication has the potential to reduce the incidence of undiagnosed infections, it does not address the underlying subsequent challenges of treating chronic biofilm-related infections. Chronic biofilm-related infections are highly resistant to standard treatments, and new therapeutic strategies, such as biofilm-disrupting agents, are needed in conjunction with better diagnostic tools like sonication to improve patient outcomes. Therefore, while sonication may be an initial tool for detection, the subsequent treatment of infection remains. Finally, the role of sonication in aseptic revisions also appears to have lower clinical value as the sensitivity and specificity of predicting future PJI is only moderately successful.[29-31]

In conclusion, sonication of explanted implants obtained during revision surgery seems to be a reasonable approach to enhance the detection of biofilms and improve the diagnosis of PJIs. While studies support its utility with a high sensitivity and specificity equal to or superior to conventional tissue cultures, further research is needed to refine and standardize protocols, address variability in effectiveness, and evaluate its impact on clinical outcomes. In addition, sonication should be considered as an adjunct rather than a sole diagnostic approach. This technique should be part of a broader approach to the management of infected implants, including improved infection prevention strategies and targeted antibiotic treatments. However more prospective research is needed to develop standardized protocols for comparison across studies.

References:

- 1. Bozic KJ, Lau E, Kurtz S, Ong K, Berry DJ: Patient-related risk factors for postoperative mortality and periprosthetic joint infection in medicare patients undergoing TKA. Clin Orthop Relat Res 2012, 470(1):130-137.
- 2. Bozic KJ, Lau E, Kurtz S, Ong K, Rubash H, Vail TP, Berry DJ: **Patient-related** risk factors for periprosthetic joint infection and postoperative mortality following total hip arthroplasty in Medicare patients. *J Bone Joint Surg Am* 2012, **94**(9):794-800.
- 3. Gbejuade HO, Lovering AM, Webb JC: The role of microbial biofilms in prosthetic joint infections. *Acta Orthop* 2015, **86**(2):147-158.
- 4. Jacqueline C, Caillon J: **Impact of bacterial biofilm on the treatment of prosthetic joint infections**. *J Antimicrob Chemother* 2014, **69 Suppl 1**:i37-40.
- 5. Gomez-Urena E, Sierra RJ, Greenwood-Quiantance KE, Karau MJ, Steckelberg JM, Patel R: Sonication Culture of Antimicrobial Agent-Containing Cement Spacers Removed during Staged Revisions for Arthroplasty Infection. *J Clin Microbiol* 2019, 57(2).
- 6. Zhang Q, Ding B, Wu J, Dong J, Liu F: Sonication fluid culture of antibiotic-loaded bone cement spacer has high accuracy to confirm eradication of infection before reimplantation of new prostheses. *J Orthop Surg Res* 2021, **16**(1):377.
- 7. Hoekstra M, Veltman ES, Nurmohamed R, van Dijk B, Rentenaar RJ, Vogely HC, van der Wal BCH: Sonication Leads to Clinically Relevant Changes in Treatment of Periprosthetic Hip or Knee Joint Infection. *J Bone Jt Infect* 2020, 5(3):128-132.
- 8. Nelson CL, Jones RB, Wingert NC, Foltzer M, Bowen TR: Sonication of antibiotic spacers predicts failure during two-stage revision for prosthetic knee and hip infections. Clin Orthop Relat Res 2014, 472(7):2208-2214.
- 9. Mariconda M, Ascione T, Balato G, Rotondo R, Smeraglia F, Costa GG, Conte M: Sonication of antibiotic-loaded cement spacers in a two-stage revision protocol for infected joint arthroplasty. *BMC Musculoskelet Disord* 2013, **14**:193.

- 10. Rothenberg AC, Wilson AE, Hayes JP, O'Malley MJ, Klatt BA: **Sonication of Arthroplasty Implants Improves Accuracy of Periprosthetic Joint Infection Cultures**. *Clin Orthop Relat Res* 2017, **475**(7):1827-1836.
- 11. Aliyev O, Yildiz F, Kaya HB, Aghazada A, Sumbul B, Citak M, Tuncay I: Sonication of explants enhances the diagnostic accuracy of synovial fluid and tissue cultures and can help determine the appropriate antibiotic therapy for prosthetic joint infections. *Int Orthop* 2022, **46**(3):415-422.
- 12. Sebastian S, Malhotra R, Sreenivas V, Kapil A, Chaudhry R, Dhawan B: Sonication of orthopaedic implants: A valuable technique for diagnosis of prosthetic joint infections. *J Microbiol Methods* 2018, **146**:51-54.
- 13. Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, Mandrekar JN, Cockerill FR, Steckelberg JM, Greenleaf JF, Patel R: **Sonication of removed hip and knee prostheses for diagnosis of infection**. *N Engl J Med* 2007, **357**(7):654-663.
- 14. Zhai Z, Li H, Qin A, Liu G, Liu X, Wu C, Li H, Zhu Z, Qu X, Dai K: **Meta-analysis of sonication fluid samples from prosthetic components for diagnosis of infection after total joint arthroplasty**. *J Clin Microbiol* 2014, **52**(5):1730-1736.
- 15. Ji B, Aimaiti A, Wang F, Maimaitiyiming A, Zhang X, Li G, Xu B, Zheng J, Cao L: Intraoperative Direct Sonication of Implants and Soft Tissue for the Diagnosis of Periprosthetic Joint Infection. *J Bone Joint Surg Am* 2023.
- 16. Hischebeth GT, Randau TM, Molitor E, Wimmer MD, Hoerauf A, Bekeredjian-Ding I, Gravius S: Comparison of bacterial growth in sonication fluid cultures with periprosthetic membranes and with cultures of biopsies for diagnosing periprosthetic joint infection. *Diagn Microbiol Infect Dis* 2016, **84**(2):112-115.
- 17. Rak M, KavcIc M, Trebse R, Co RA: **Detection of bacteria with molecular methods in prosthetic joint infection: sonication fluid better than periprosthetic tissue**. *Acta Orthop* 2016, **87**(4):339-345.
- 18. Janz V, Wassilew GI, Kribus M, Trampuz A, Perka C: **Improved identification of polymicrobial infection in total knee arthroplasty through sonicate fluid cultures**. *Arch Orthop Trauma Surg* 2015, **135**(10):1453-1457.

- 19. Janz V, Wassilew GI, Hasart O, Tohtz S, Perka C: Improvement in the detection rate of PJI in total hip arthroplasty through multiple sonicate fluid cultures. *J Orthop Res* 2013, **31**(12):2021-2024.
- 20. Cazanave C, Greenwood-Quaintance KE, Hanssen AD, Karau MJ, Schmidt SM, Gomez Urena EO, Mandrekar JN, Osmon DR, Lough LE, Pritt BS *et al*: **Rapid molecular microbiologic diagnosis of prosthetic joint infection**. *J Clin Microbiol* 2013, **51**(7):2280-2287.
- 21. Scorzolini L, Lichtner M, Iannetta M, Mengoni F, Russo G, Panni AS, Vasso M, Bove M, Villani C, Mastroianni CM, Vullo V: Sonication technique improves microbiological diagnosis in patients treated with antibiotics before surgery for prosthetic joint infections. *New Microbiol* 2014, 37(3):321-328.
- 22. Tani S, Lepetsos P, Stylianakis A, Vlamis J, Birbas K, Kaklamanos I: Superiority of the sonication method against conventional periprosthetic tissue cultures for diagnosis of prosthetic joint infections. Eur J Orthop Surg Traumatol 2018, **28**(1):51-57.
- 23. Bereza P, Ekiel A, Aptekorz M, Kusz D, Martirosian G: Assessment of Microbiological and Clinical Findings of Two-Stage Revision Arthroplasty Performed Due to Prosthetic Joint Infection. Ortop Traumatol Rehabil 2022, 24(3):163-179.
- 24. Holinka J, Pilz M, Hirschl AM, Graninger W, Windhager R, Presterl E: **Differential bacterial load on components of total knee prosthesis in patients with prosthetic joint infection**. *Int J Artif Organs* 2012, **35**(10):735-741.
- 25. Huang Z, Wu Q, Fang X, Li W, Zhang C, Zeng H, Wang Q, Lin J, Zhang W: Comparison of culture and broad-range polymerase chain reaction methods for diagnosing periprosthetic joint infection: analysis of joint fluid, periprosthetic tissue, and sonicated fluid. *Int Orthop* 2018, **42**(9):2035-2040.
- 26. Fritsche T, Schnetz M, Klug A, Fischer S, Ruckes C, Hunfeld KP, Hoffmann R, Gramlich Y: **Tissue sampling is non-inferior in comparison to sonication in orthopedic revision surgery**. *Arch Orthop Trauma Surg* 2023, **143**(6):2901-2911.

- 27. Silva NDS, De Melo BST, Oliva A, de Araujo PSR: Sonication protocols and their contributions to the microbiological diagnosis of implant-associated infections: a review of the current scenario. *Front Cell Infect Microbiol* 2024, **14**:1398461.
- 28. Sambri A, Maso A, Storni E, Donati ME, Pederzoli A, Dallari D, Bianchi G, Donati DM: Is sonication of antibiotic-loaded cement spacers useful in two-stage revision of prosthetic joint infection? *J Microbiol Methods* 2019, **156**:81-84.
- 29. Bereza PL, Ekiel A, Augusciak-Duma A, Aptekorz M, Wilk I, Wojciechowski P, Kusz DJ, Martirosian G: Identification of Asymptomatic Prosthetic Joint Infection: Microbiologic and Operative Treatment Outcomes. Surg Infect (Larchmt) 2017, 18(5):582-587.
- 30. Sambri A, Cadossi M, Giannini S, Pignatti G, Marcacci M, Neri MP, Maso A, Storni E, Gamberini S, Naldi S *et al*: **Is Treatment With Dithiothreitol More Effective Than Sonication for the Diagnosis of Prosthetic Joint Infection?** *Clin Orthop Relat Res* 2018, **476**(1):137-145.
- 31. Sorli L, Puig L, Torres-Claramunt R, Gonzalez A, Alier A, Knobel H, Salvado M, Horcajada JP: The relationship between microbiology results in the second of a two-stage exchange procedure using cement spacers and the outcome after revision total joint replacement for infection: the use of sonication to aid bacteriological analysis. *J Bone Joint Surg Br* 2012, **94**(2):249-253.