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RESPONSE/RECOMMENDATION: Extracellular DNA (eDNA) contributes to the structure,
growth and immune-evasive properties of S. aureus biofilms in orthopaedic infections, and is
derived from both the bacteria that undergo autolysis and neutrophils that undergo NETosis at the
infection site. eDNA release via autolysis is mediated by murein hydrolase, which is encoded by
the atl gene. The cidABC and IrgAB operons modulate murein hydrolase activity and autolysis,
while the CidR and IytSR transcription regulators control the expression of these operons,
respectively. Other murein hydrolase-independent mechanisms of eDNA release have also been
reported, such as the gdpP-encoded phosphodiesterase and nuc-encoded thermonuclease
pathways.

LEVEL OF EVIDENCE: Strong
DELEGATE VOTE: Agree: [% vote], Disagree: [%], Abstain: [%]

RATIONALE: A comprehensive literature search was conducted using the terms “biofilm”,
“Staphylococcus aureus” and “extracellular DNA” within PubMed and Scopus, which initially
yielded 374 potentially relevant unique studies. These were screened by two independent
reviewers, of which 146 were selected for full-text review and 37 were finally included for
evaluation. Staphylococcus aureus is a highly prevalent cause of musculoskeletal infections [1].
Importantly, S. aureus is known to form biofilms, which consists of cells embedded in an
extracellular matrix comprising proteins, polysaccharides, lipids, and extracellular DNA (eDNA).
The exact composition of this matrix is highly strain-, time- and condition-dependent [2—4].
Although research has focused on the protein and polysaccharide constituents of the matrix [5,6],
it has been increasingly recognized that eDNA contributes to the structure, stability, growth and
immune-evasive properties of S. aureus biofilms [7]. Given the critical role of eDNA,
understanding and counteracting the mechanisms that control the release of eDNA could provide
an alternative therapeutic target for bacterial eradication.

eDNA in S. aureus biofilms is composed of DNA released by autolysis of a subfraction of the
population [8,9], and autolysis-independent pathways have not yet been demonstrated in S. aureus
[10]. As a result, eDNA is believed to encompass all chromosomally encoded genes [10] as well
as some amount of extrachromosomal plasmid DNA [9], which contrasts with findings in other
bacterial species. In particular, murein hydrolase plays a key role in autolysis as by degrading the
peptidoglycan cell wall [11], lysing the cell and releasing genomic DNA [8,9]. Mutations in the
gene coding for murein hydrolase, at/, result in defective biofilm formation [12] with decreased
eDNA content [13,14]. Similarly, when the biofilm of an a#/ mutant was treated with DNase I, no
significant difference in biomass was found compared to that of a wild-type [4].



The cidABC and IrgAB operons regulate cell death and lysis [8]. The cidA gene encodes a holin
membrane-associated protein that oligomerizes and forms pores in the membrane [11,15]. This
allows murein hydrolase, the endolysin, to access the cell wall and facilitate lysis [16]. In contrast,
the IrgA gene encodes an antiholin protein that prevents holins from oligomerizing, thus
suppressing lysis [8,15]. These operons work in tandem to modulate murein hydrolase activity and
autolysis. Expression of cidA and IrgA have been shown to be affected by local oxygen
concentrations [17].

CidR, a LysR-type transcriptional regulator, controls the expression of the cid ABC operon, and its
expression may in turn be affected by glucose levels [18]. In the presence of acetic acid, a
byproduct of glucose metabolism, CidR enhances the transcription of cidA [18,19], which is likely
a pH-independent interaction. While CidA plays a significant role in cell lysis, one study has shown
that CidB and CidC may also contribute to this process [16].

In the same vein, the IrgAB operon is controlled by the 1ytSR regulatory system [20], which
encompasses two signal transduction pathways: first, it detects reductions in membrane potential
and enhances the transcription of IrgA [19,20]; additionally, it activates lrgAB in response to excess
glucose metabolism.

Other murein hydrolase-independent mechanisms of eDNA release have also been reported. For
instance, the gdpP gene encodes a phosphodiesterase responsible for cleaving cyclic-di-AMP.
Previous studies have demonstrated that deletions of gdpP increase peptidoglycan cross-linking
and enhance resistance to antibiotics targeting the cell envelope, which support the theory that
reduced cyclic-di-AMP levels compromise cell wall integrity and promote cell lysis [21]. Higher
glucose levels have also been found to decrease cyclic-di-AMP and enhance autolysis [21]. A
separate study identified a mutation in the purine biosynthesis pathway (ApurF) that significantly
decreased cyclic-di-AMP levels, biofilm formation, and eDNA levels [22]. When these mutants
were supplemented with exogenous cyclic-di-AMP, eDNA production levels were comparable to
those of the wild-type.

Another gene implicated is the nuc gene, which encodes staphylococcal thermonuclease that
degrades eDNA, aiding S. aureus in its defense against neutrophil extracellular traps (NETs) [23]
and potentially facilitating the release of a subpopulation cells from the biofilm [24]. Strains with
reduced thermonuclease activity exhibit greater biofilm formation, thus there is an inverse
relationship between nuc expression and eDNA levels in the biofilm [25,26].

The intercellular adhesion locus, ica, present in S. aureus is required for biofilm formation.
Previous studies have attempted to categorize methicillin-resistant S. aureus (MRSA) biofilms as
primarily composed of protein and eDNA (ica-independent), while classifying methicillin-
sensitive S. aureus (MSSA) biofilms as polysaccharide-based (ica-dependent). However, this
characterization does not apply universally to all strains, since most S. aureus isolates harbor the
ica operon. By contrast, its expression is highly regulated and influenced by various environmental
factors [27]. Ica-dependent biofilms have observed to contain lower levels of eDNA compared to
ica-independent biofilms [2], although this may not apply to all ica-dependent strains [4].
However, whether this lower level of eDNA adversely affects structural support of biofilm remains
to be seen, since both ica-dependent and ica-independent biofilms were equally susceptible to



DNase I treatment [28]. Another study analyzing 47 clinical isolates of S. aureus also found eDNA
present in biofilms of all strains, regardless of their methicillin resistance status [2].

Subinhibitory concentrations of beta-lactam antibiotics have been shown to enhance both eDNA
release and biofilm formation in certain strains of S. aureus [29,30]. This is intuitive as cell wall
damage would lead to increased eDNA release, thus promoting biofilm formation. Furthermore,
subinhibitory levels of other classes of antibiotics such as clindamycin, a protein synthesis
inhibitor, may also influence eDNA release in S. aureus biofilms, although this effect could be
strain-specific [31]. Subinhibitory ceftriaxone treatment was also found to upregulate at/
expression, contributing to increased eDNA levels within the biofilm [32]. Conversely, some
antibiotics have demonstrated the opposite effect. For instance, subinhibitory levels of nisin, which
disrupts cell wall depolarization and inhibits peptidoglycan synthesis, were found to reduce eDNA
content in S. aureus biofilms [33,34]. Similarly, subinhibitory concentrations of tunicamycin, a
teichoic acid synthesis inhibitor, led to decreased eDNA release [35].

The critical role of eDNA in S. aureus biofilms as well as its ubiquitous nature across various
strains have rendered eDNA an important target for modern therapeutics. It is evident that the
mechanisms of eDNA release may be influenced by various strain and environmental factors,
including but not limited to local oxygen concentration, glucose levels and culture media. More
importantly, further research is needed to understand the influence of subinhibitory antibiotic
levels on S. aureus eDNA release, given its immense clinical implications for physicians treating
musculoskeletal infections.

Active research in the field of in vivo biofilm formation is also focused on host biomolecule
contributions including eDNA from NETs [36]. During NETosis, DNA is released from neutrophils
recruited to the infection site through a process involving bacterial activation of NADPH oxidase,
which generates reactive oxygen species that lead to chromatin decondensation by enzymes that
modify histones (e.g. PAD4) [37,38]. Enzymes including myeloperoxidase (MPO) and neutrophil
elastase (NE) then rupture the nuclear membrane to release the chromosomal DNA from the
neutrophil in NETs during "lytic NETosis", where the cell dies, or “vital NETosis”, which produces
NETs and anuclear cytoplasts that phagocytose bacteria. Pathogens including S. aureus can usurp
NETs by secreting endonucleases that remodels host DNA into biofilm eDNA [39]. Thus, it is
unclear how effective targeting bacterial eDNA formation can be as a treatment for orthopaedic
infections if the majority of eDNA in biofilm is actually derived from NETs, as some investigators
have hypothesized [40].
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