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B21: “What key regulatory mechanisms control the release of extracellular DNA (eDNA) 

from Staphylococcus aureus during autolysis, which significantly contributes to the 

structural integrity of biofilm?” 

Graham S Goh, Armita A Abedi, Leibnitz J Martinez, Gowrishankar Muthukrishnan, Imre Sallai, 

Daniel R Schlatterer, Edward M Schwarz & Chao Xie   

 

RESPONSE/RECOMMENDATION: Extracellular DNA (eDNA) contributes to the structure, 

growth and immune-evasive properties of S. aureus biofilms in orthopaedic infections, and is 

derived from both the bacteria that undergo autolysis and neutrophils that undergo NETosis at the 

infection site. eDNA release via autolysis is mediated by murein hydrolase, which is encoded by 

the atl gene. The cidABC and lrgAB operons modulate murein hydrolase activity and autolysis, 

while the CidR and lytSR transcription regulators control the expression of these operons, 

respectively. Other murein hydrolase-independent mechanisms of eDNA release have also been 

reported, such as the gdpP-encoded phosphodiesterase and nuc-encoded thermonuclease 

pathways.  

LEVEL OF EVIDENCE: Strong 

DELEGATE VOTE: Agree: [% vote], Disagree: [%], Abstain: [%] 

 

RATIONALE: A comprehensive literature search was conducted using the terms “biofilm”, 

“Staphylococcus aureus” and “extracellular DNA” within PubMed and Scopus, which initially 

yielded 374 potentially relevant unique studies. These were screened by two independent 

reviewers, of which 146 were selected for full-text review and 37 were finally included for 

evaluation. Staphylococcus aureus is a highly prevalent cause of musculoskeletal infections [1]. 

Importantly, S. aureus is known to form biofilms, which consists of cells embedded in an 

extracellular matrix comprising proteins, polysaccharides, lipids, and extracellular DNA (eDNA). 

The exact composition of this matrix is highly strain-, time- and condition-dependent [2–4]. 

Although research has focused on the protein and polysaccharide constituents of the matrix [5,6], 

it has been increasingly recognized that eDNA contributes to the structure, stability, growth and 

immune-evasive properties of S. aureus biofilms [7]. Given the critical role of eDNA, 

understanding and counteracting the mechanisms that control the release of eDNA could provide 

an alternative therapeutic target for bacterial eradication. 

 

eDNA in S. aureus biofilms is composed of DNA released by autolysis of a subfraction of the 

population [8,9], and autolysis-independent pathways have not yet been demonstrated in S. aureus 

[10]. As a result, eDNA is believed to encompass all chromosomally encoded genes [10] as well 

as some amount of extrachromosomal plasmid DNA [9], which contrasts with findings in other 

bacterial species. In particular, murein hydrolase plays a key role in autolysis as by degrading the 

peptidoglycan cell wall [11], lysing the cell and releasing genomic DNA [8,9]. Mutations in the 

gene coding for murein hydrolase, atl, result in defective biofilm formation [12] with decreased 

eDNA content [13,14]. Similarly, when the biofilm of an atl mutant was treated with DNase I, no 

significant difference in biomass was found compared to that of a wild-type [4]. 
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The cidABC and lrgAB operons regulate cell death and lysis [8]. The cidA gene encodes a holin 

membrane-associated protein that oligomerizes and forms pores in the membrane [11,15]. This 

allows murein hydrolase, the endolysin, to access the cell wall and facilitate lysis [16]. In contrast, 

the lrgA gene encodes an antiholin protein that prevents holins from oligomerizing, thus 

suppressing lysis [8,15]. These operons work in tandem to modulate murein hydrolase activity and 

autolysis. Expression of cidA and lrgA have been shown to be affected by local oxygen 

concentrations [17].  

 

CidR, a LysR-type transcriptional regulator, controls the expression of the cidABC operon, and its 

expression may in turn be affected by glucose levels [18]. In the presence of acetic acid, a 

byproduct of glucose metabolism, CidR enhances the transcription of cidA [18,19], which is likely 

a pH-independent interaction. While CidA plays a significant role in cell lysis, one study has shown 

that CidB and CidC may also contribute to this process [16]. 

 

In the same vein, the lrgAB operon is controlled by the lytSR regulatory system [20], which 

encompasses two signal transduction pathways: first, it detects reductions in membrane potential 

and enhances the transcription of lrgA [19,20]; additionally, it activates lrgAB in response to excess 

glucose metabolism.   

 

Other murein hydrolase-independent mechanisms of eDNA release have also been reported. For 

instance, the gdpP gene encodes a phosphodiesterase responsible for cleaving cyclic-di-AMP. 

Previous studies have demonstrated that deletions of gdpP increase peptidoglycan cross-linking 

and enhance resistance to antibiotics targeting the cell envelope, which support the theory that 

reduced cyclic-di-AMP levels compromise cell wall integrity and promote cell lysis [21]. Higher 

glucose levels have also been found to decrease cyclic-di-AMP and enhance autolysis [21]. A 

separate study identified a mutation in the purine biosynthesis pathway (ΔpurF) that significantly 

decreased cyclic-di-AMP levels, biofilm formation, and eDNA levels [22]. When these mutants 

were supplemented with exogenous cyclic-di-AMP, eDNA production levels were comparable to 

those of the wild-type. 

 

Another gene implicated is the nuc gene, which encodes staphylococcal thermonuclease that 

degrades eDNA, aiding S. aureus in its defense against neutrophil extracellular traps (NETs) [23] 

and potentially facilitating the release of a subpopulation cells from the biofilm [24]. Strains with 

reduced thermonuclease activity exhibit greater biofilm formation, thus there is an inverse 

relationship between nuc expression and eDNA levels in the biofilm [25,26].  

 

The intercellular adhesion locus, ica, present in S. aureus is required for biofilm formation. 

Previous studies have attempted to categorize methicillin-resistant S. aureus (MRSA) biofilms as 

primarily composed of protein and eDNA (ica-independent), while classifying methicillin-

sensitive S. aureus (MSSA) biofilms as polysaccharide-based (ica-dependent). However, this 

characterization does not apply universally to all strains, since most S. aureus isolates harbor the 

ica operon. By contrast, its expression is highly regulated and influenced by various environmental 

factors [27]. Ica-dependent biofilms have observed to contain lower levels of eDNA compared to 

ica-independent biofilms [2], although this may not apply to all ica-dependent strains [4]. 

However, whether this lower level of eDNA adversely affects structural support of biofilm remains 

to be seen, since both ica-dependent and ica-independent biofilms were equally susceptible to 
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DNase I treatment [28]. Another study analyzing 47 clinical isolates of S. aureus also found eDNA 

present in biofilms of all strains, regardless of their methicillin resistance status [2]. 

 

Subinhibitory concentrations of beta-lactam antibiotics have been shown to enhance both eDNA 

release and biofilm formation in certain strains of S. aureus [29,30]. This is intuitive as cell wall 

damage would lead to increased eDNA release, thus promoting biofilm formation. Furthermore, 

subinhibitory levels of other classes of antibiotics such as clindamycin, a protein synthesis 

inhibitor, may also influence eDNA release in S. aureus biofilms, although this effect could be 

strain-specific [31]. Subinhibitory ceftriaxone treatment was also found to upregulate atl 

expression, contributing to increased eDNA levels within the biofilm [32]. Conversely, some 

antibiotics have demonstrated the opposite effect. For instance, subinhibitory levels of nisin, which 

disrupts cell wall depolarization and inhibits peptidoglycan synthesis, were found to reduce eDNA 

content in S. aureus biofilms [33,34]. Similarly, subinhibitory concentrations of tunicamycin, a 

teichoic acid synthesis inhibitor, led to decreased eDNA release [35].  

 

The critical role of eDNA in S. aureus biofilms as well as its ubiquitous nature across various 

strains have rendered eDNA an important target for modern therapeutics. It is evident that the 

mechanisms of eDNA release may be influenced by various strain and environmental factors, 

including but not limited to local oxygen concentration, glucose levels and culture media. More 

importantly, further research is needed to understand the influence of subinhibitory antibiotic 

levels on S. aureus eDNA release, given its immense clinical implications for physicians treating 

musculoskeletal infections.  

 

Active research in the field of in vivo biofilm formation is also focused on host biomolecule 

contributions including eDNA from NETs [36]. During NETosis, DNA is released from neutrophils 

recruited to the infection site through a process involving bacterial activation of NADPH oxidase, 

which generates reactive oxygen species that lead to chromatin decondensation by enzymes that 

modify histones (e.g. PAD4) [37,38]. Enzymes including myeloperoxidase (MPO) and neutrophil 

elastase (NE) then rupture the nuclear membrane to release the chromosomal DNA from the 

neutrophil in NETs during "lytic NETosis", where the cell dies, or “vital NETosis”, which produces 

NETs and anuclear cytoplasts that phagocytose bacteria. Pathogens including S. aureus can usurp 

NETs by secreting endonucleases that remodels host DNA into biofilm eDNA [39]. Thus, it is 

unclear how effective targeting bacterial eDNA formation can be as a treatment for orthopaedic 

infections if the majority of eDNA in biofilm is actually derived from NETs, as some investigators 

have hypothesized [40]. 
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