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Response/Recommendation: The antimicrobial properties of orthopaedic titanium implants should 

be evaluated using a combination of in vitro, animal, and clinical studies to ensure comprehensive 

assessment of safety and efficacy. Animal models provide crucial insights into the biological 

interactions of implants with host tissues and pathogens, while human studies validate clinical 

applicability. To effectively evaluate the antimicrobial properties of new orthopaedic titanium 

implants, it is recommended to use a combination of well-established animal models, appropriate 

bacterial species, standardized inoculation doses, and comprehensive analytical techniques. 

 

Level of Evidence: Moderate. While there is substantial evidence supporting the evaluation 

methods, variations in study design, bacterial strains, and outcome measures necessitate further 

standardization to strengthen clinical translation. 

 

Delegate Vote: Agree: [% vote], Disagree: [%], Abstain: [%] 

 

 

Rationale:  Eligibility criteria: A systematic literature review was conducted of the 

PubMed and Web of Science databases. Due to the immense number of scientific articles on this 

topic (2747 studies screened), this review only included studies published from 2015 onwards, 

focusing on animal models and human studies that evaluate the effectiveness and safety of 

antimicrobial implants made of titanium (Ti) and its alloys. Review articles, studies restricted to 

purely in vitro models, or focusing on non-orthopaedic devices or biomaterials other than Ti were 

excluded. Included interventions were antibacterial coatings, nanomaterials, surface modifications, 

and localized drug delivery systems applied to the implants to prevent bacterial colonisation. 

Excluded interventions were antimicrobial treatments not part of the implant itself, such as systemic 

or local antibiotics, debridement treatments, in situ sonication, and electrical stimulation. Included 

outcomes were reduction in biofilm formation, bacterial adhesion, infection rates, antibiotic 

resistance, bacterial viability, inflammatory response, histological analysis, clinical outcomes, and 

functional outcomes. Studies that only assessed biocompatibility or osseointegration were excluded. 

Introduction: Ti implants are widely used in orthopaedics due to their excellent 

biocompatibility, mechanical strength, and corrosion resistance. However, implant-associated 

infections remain a significant challenge, necessitating the development and evaluation of 

antimicrobial strategies. While in vitro models provide initial insights into antimicrobial efficacy, 

their relevance is limited due to the absence of complex host factors such as immune responses and 

tissue integration. This review provides an overview of the recent animal and human models used to 

evaluate the antimicrobial properties of orthopaedic Ti implants. Of the 51 studies analysed, 42 

utilized animal models and 9 were human clinical studies (2 randomized controlled trials, 6 cohort 

studies, and 1 case-control study).  

Methodological considerations: 

In vitro models are essential for preliminary screening of antimicrobial properties before 

progressing to in vivo studies. In vitro models allow for controlled experimentation on bacterial 

adhesion, biofilm formation, and antimicrobial efficacy under standardized conditions. Common in 

vitro techniques include colony forming unit (CFU) counting, live/dead staining, crystal violet 

staining, and imaging using confocal laser-scanning microscopy (CLSM) and scanning electron 

microscopy (SEM). In vitro models provide valuable insights into the mechanisms of action of 



antimicrobial strategies and help refine experimental conditions for subsequent in vivo studies. 

Animal models and human studies both play crucial roles in evaluating the antimicrobial properties 

of orthopaedic Ti implants.  

Animal models of orthopaedic-device related infection (ODRI) offer controlled 

environments and the ability to perform invasive procedures, providing valuable insights into the 

implant’s effectiveness in preventing infections. The most frequently used animal species in the 

studies are rats, rabbits, and mice, selected for their cost-effectiveness and translational relevance to 

human bone physiology. For instance, Sprague-Dawley rats, New Zealand White rabbits, and 

C57BL/6 mice are commonly employed due to their manageable size and well-characterized 

immune responses. In addition, sheep and minipigs were also used. The most common sample size 

per experimental group was n=6 for rabbits,
1-5

 n=5-10 for rats and mice,
6-8

 and n=7 for sheep and 

minipigs.
9; 10

 The inoculum (CFU and volume) used to induce infection must be appropriate for the 

animal species and body region, and determined through preliminary pilot studies. Too large an 

inoculum can cause sepsis and death, while too small a dose may be cleared rapidly. The time 

required for infection establishment varies by species and differs from clinical cases. Factors such 

as bacterial strain virulence and growth phase influence the inoculum concentration needed. The 

choice of bacterial species depends on whether the model targets acute (for example, 

Staphylococcus aureus) or chronic infections (such as, coagulase-negative staphylococci). 

Reflecting its clinical relevance in implant-associated infections, S. aureus was the predominant 

bacterial species used to induce infections (32 studies), with strains such as ATCC 25923 and 

Xen29 most common. The inoculation doses to induce infections mimicking clinical conditions 

vary, with typical doses being 10
6
-10

8
 CFU/ml for rabbits and 10

6
 CFU/ml for rats. Most animal 

models have so far utilized an initial inoculum of planktonic bacterial cultures. Introducing mature 

biofilms grown on an implant as the initial inoculum in animal models could further optimise 

antimicrobial treatment strategies.
11

 In addition, bone remodelling kinetics differ between animals 

and humans, affecting study duration. To enhance clinical relevance, implant placement should 

allow weight-bearing movement. The types of implants used include rods, screws, nails, pins, and 

plates, often placed in the femur or tibia to simulate clinical scenarios.
12-21

 Typical outcomes 

measured include bacterial viability, infection rates, clinical outcomes, inflammatory response, and 

reduction in biofilm formation. Evaluation time-points range from 1 week to several months, 

depending on the study design. For instance, Zhou et al. (2017) evaluated infection reduction and 

clinical outcomes over 8 weeks in a rabbit model.
5
 

Clinical Studies often employ cohort or randomized controlled trial (RCT) designs. The 

populations studied include patients undergoing orthopaedic surgeries with increased infection risk, 

such as those with fractures or joint replacements. Similar to the animal studies, clinical studies 

evaluated antibiotic-loaded coatings, silver coatings, and other antimicrobial strategies. For 

instance, gentamicin-coated intramedullary nails and silver-coated mega prostheses have been 

investigated for their efficacy in preventing infections. Among the 9 human studies evaluated, all 

included clinical outcome measurements, such as patient recovery rates and implant success rates, 6 

measured infection rates, and 4 assessed functional outcomes, such as mobility and pain levels.
22-30

 

Evaluation time-points range from several months to years, 1 year being a common follow-up 

timepoint. For example, DeMeo et al. (2023) reported infection rates and clinical outcomes over a 

follow-up period of 34.41 ± 9.46 months,
22

 and Kawano et al. (2023) reported clinical and 

functional outcomes for 5 years.
24

 

  Outcome evaluation and analytical techniques: Commonly measured outcomes for evaluating 

the antimicrobial properties of Ti orthopaedic implants in animal and clinical studies include: (1) 

Bacterial viability, which assesses the proportion of live versus dead bacteria to determine the 

implant’s antimicrobial effectiveness (killing or inhibition). Common methods include live/dead 

staining, metabolic assays, ATP quantification, and qPCR targeting viable bacteria. (2) Bacterial 

adhesion quantifies the initial bacterial attachment to the implant surface, indicating how well the 



implant prevents colonization. Measurement methods include CFU counting after surface 

detachment by sonication and vortexing, fluorescence microscopy, crystal violet staining, and SEM 

imaging. (3) Reduction in biofilm formation measures the implant’s ability to prevent or reduce 

mature biofilms, which are hard to treat. Methods for assessing biofilm formation include crystal 

violet staining for biofilm biomass quantification, CLSM, SEM imaging, and CFU counting from 

biofilm dispersal. (4) Infection rates track the incidence and severity of infections post-

implantation to assess the clinical effectiveness of antimicrobial strategies. Methods for measuring 

infection rates include clinical observation, microbiological cultures, imaging (X-ray, MRI), and 

infection scoring systems. (5) Clinical outcomes assess patient health and implant success, 

including recovery rates and complication rates, implant integration, and overall health outcomes 

following implantation. Measurement methods include clinical examination, patient-reported 

outcomes (including pain, quality of life), imaging, and complication tracking. (6) Inflammatory 

response monitors local and systemic inflammatory markers to detect infections or adverse 

reactions caused by the implant. Methods for assessing inflammatory response include blood tests, 

histological analysis, and immunohistochemistry.  Fewer studies include (7) functional outcomes to 

evaluate the implant’s impact on physical function, ensuring it does not impair performance.
5; 26

 

Measurement methods include mobility tests, range of motion assessments, pain scales, and 

functional scoring systems. (8) Antibiotic resistance evaluates whether bacteria exposed to the 

implant develop resistance to antibiotics over time, which could compromise long-term 

antimicrobial effectiveness. Measurement methods include antibiotic susceptibility testing (MIC), 

detection of resistance genes, and whole-genome sequencing. Interestingly, only one of the studies 

evaluated antibiotic resistance after exposure to the implant.
22

 Recent technological advances have 

significantly enhanced the evaluation of antimicrobial properties in orthopaedic implants. 

Technologies such as 3D-printing, bacterial genomic sequencing, and real-time in vivo imaging 

have improved preclinical models, making them better at mimicking clinical infections and 

evaluating antimicrobial materials. These advances enable more accurate and detailed assessments 

of how implants interact with bacteria and the host immune system. Among the evaluated animal 

studies, the most frequently employed analytical techniques were: (1) histology (90%) to examine 

tissue samples for signs of infection, inflammation, and bone integration (H&E, Gram, Giemsa, and 

ALP/TRAP staining were commonly used); (2) CFU counting (67%) to quantify the number of 

viable bacteria on the implant surface and surrounding tissues; (3) radiographic imaging (X-ray) 

(36%) to evaluate bone healing, implant integration, and signs of infection; (4) haematological 

analyses (29%) of inflammatory markers (white blood cell counts (WBC), C-reactive protein 

(CRP), TNF-α, and IL-6) to assess the animal’s inflammatory response to the implant; (5) micro-

computed tomography (micro-CT) (19%) to provide detailed 3D images of the bone and implant 

interface; (6) microscopy for the visualisation of biofilms on implants or tissues (SEM (17%), 

CLSM combined with Live/Dead® BacLight™ staining (7%)); and (7) bacterial bioluminescence 

imaging using IVIS (in vivo imaging system) for bacterial tracking (17%).
31; 32

 These methods 

provide quantitative and qualitative assessments of ODRI and host response. Among the 9 human 

studies evaluated, outcomes were typically evaluated by: (1) Bacterial culturing of tissue 

biopsies,
22; 29

 (2) radiographic imaging for detection of osseointegration, implant stability, and 

signs of implant loosening and failure;
22; 24-26

 (3) haematological analyses including complete 

blood count (CBC) paired with serum analysis,
23

 and (4) the use of various scoring/classification 

systems (such as Harris Hip Score (HHS),
23

 Gustilo–Anderson classification for open fractures,
22

 

Japanese Orthopaedic Association (JOA) score for spine,
24

 ASEPSIS wound healing score,
25

 Lower 

Extremity Functional Scale (LEFS),
27

 Short Assessment of Patient Satisfaction (SAPS),
27

 and 

Implant failure modified classification by Henderson et al).
30

 

Antimicrobial strategies: The reviewed studies employed various antimicrobial strategies, 

most often including antibiotic-loaded coatings (such as gentamicin, vancomycin),
33; 34

 antiseptic-

loaded coatings (including silver,
23; 24; 28

 iodine,
30

 chlorhexidine
35-37

), or antimicrobial peptides 



(AMPs).
6; 38; 39

 These antimicrobial agents were often loaded in hydrogels, nanoparticles, or 

nanotubes bound to the Ti implant surface. Most of the strategies demonstrated efficacy in reducing 

bacterial colonization and preventing osteomyelitis. For example, gentamicin-coated implants 

demonstrated significant reductions in infection rates and improved clinical outcomes in both 

animal and human studies.
27; 40

 Similarly, silver-coated implants demonstrated effective 

antimicrobial properties and reduced bacterial colonization without significant adverse effects.
41; 42

 

Localized drug delivery systems, using biodegradable polymers and nanomaterials,
43-45

 provided 

sustained release of antimicrobial agents, effectively reducing biofilm formation and infection rates. 

In animal studies, various antimicrobial strategies have been evaluated for their 

effectiveness in preventing infections associated with Ti orthopaedic implants. For instance, the use 

of hydroxypropyltrimethyl ammonium chloride chitosan coatings on Ti exhibited significant 

infection control and reduced bone destruction.
46

 Similarly, polymeric nanofiber coatings loaded 

with antibiotics significantly reduced infection rates and biofilm formation while enhancing implant 

integration.
33

 The combination of gentamicin and vancomycin in fluorine- and phosphorus-doped 

nanotubular oxide layers effectively decreased biofilm density without compromising implant 

integration.
47

 Other studies highlighted the benefits of surface modifications, such as the 

incorporation of AMPs and angiogenic sequences, which reduced infection rates and inflammatory 

markers while improving vascularization and osseointegration.
48

 Additionally, the use of oligo-

ampicillin hydrogels prevented bacterial colonization and osteomyelitis,
49

 and an AMP-based 

coating (OP-145) significantly reduced bacterial colonization and infection signs.
50

 Various other 

strategies, including silver coatings, hierarchical TiO2 nanotubes loaded with cinnamaldehyde, and 

antibiotic-loaded hydrogels, also demonstrated promising results in reducing infection rates, biofilm 

formation, and inflammatory responses.
1; 51; 52

 

Human studies have also explored the efficacy of different antimicrobial coatings on 

orthopaedic implants. For example, gentamicin-coated nails were effective in curing infections, 

promoting bone healing, and yielding good patient-reported outcomes.
27

 Similarly, antibiotic-loaded 

hydrogel coatings significantly reduced fracture-related infections, although some complications 

were noted.
22

 Silver-coated implants demonstrated lower infection rates and improved clinical 

outcomes in various studies.
24; 29

 The use of iodine-coated Ti implants revealed a lower infection 

incidence in both prevention and treatment cases, with no significant difference between one-stage 

and two-stage replacements.
30

 In addition, antibiotic-loaded resorbable hydrogels significantly 

reduced surgical site infections without adverse events.
25

  

 

Conclusion: Most studies reviewed demonstrate a statistically and clinically significant reduction 

in infection rates and improvement in clinical outcomes with antimicrobial coatings on orthopaedic 

Ti implants. A multi-tiered approach incorporating in vitro, animal, and clinical studies is essential 

for evaluating the antimicrobial properties of orthopaedic Ti implants, ensuring safety and efficacy 

before clinical introduction. Recent technological advances have further improved the evaluation 

process, enabling more accurate and detailed assessments. Most animal models of ODRI use S. 

aureus, but future studies should also include other clinically relevant bacteria including coagulase-

negative staphylococci, a common cause of chronic infections. Future research should also focus on 

antibiotic resistance development, which can significantly compromise the long-term effectiveness 

of antimicrobial strategies in orthopaedic implants. This will enhance the overall success and 

sustainability of antimicrobial treatments in orthopaedic applications. 
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