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Response/Recommendation: The antimicrobial properties of orthopaedic titanium implants should
be evaluated using a combination of in vitro, animal, and clinical studies to ensure comprehensive
assessment of safety and efficacy. Animal models provide crucial insights into the biological
interactions of implants with host tissues and pathogens, while human studies validate clinical
applicability. To effectively evaluate the antimicrobial properties of new orthopaedic titanium
implants, it is recommended to use a combination of well-established animal models, appropriate
bacterial species, standardized inoculation doses, and comprehensive analytical techniques.

Level of Evidence: Moderate. While there is substantial evidence supporting the evaluation
methods, variations in study design, bacterial strains, and outcome measures necessitate further
standardization to strengthen clinical translation.

Delegate Vote: Agree: [% vote], Disagree: [%], Abstain: [%]

Rationale: _Eligibility criteria: A systematic literature review was conducted of the
PubMed and Web of Science databases. Due to the immense number of scientific articles on this
topic (2747 studies screened), this review only included studies published from 2015 onwards,
focusing on animal models and human studies that evaluate the effectiveness and safety of
antimicrobial implants made of titanium (Ti) and its alloys. Review articles, studies restricted to
purely in vitro models, or focusing on non-orthopaedic devices or biomaterials other than Ti were
excluded. Included interventions were antibacterial coatings, nanomaterials, surface modifications,
and localized drug delivery systems applied to the implants to prevent bacterial colonisation.
Excluded interventions were antimicrobial treatments not part of the implant itself, such as systemic
or local antibiotics, debridement treatments, in situ sonication, and electrical stimulation. Included
outcomes were reduction in biofilm formation, bacterial adhesion, infection rates, antibiotic
resistance, bacterial viability, inflammatory response, histological analysis, clinical outcomes, and
functional outcomes. Studies that only assessed biocompatibility or osseointegration were excluded.

Introduction: Ti implants are widely used in orthopaedics due to their excellent
biocompatibility, mechanical strength, and corrosion resistance. However, implant-associated
infections remain a significant challenge, necessitating the development and evaluation of
antimicrobial strategies. While in vitro models provide initial insights into antimicrobial efficacy,
their relevance is limited due to the absence of complex host factors such as immune responses and
tissue integration. This review provides an overview of the recent animal and human models used to
evaluate the antimicrobial properties of orthopaedic Ti implants. Of the 51 studies analysed, 42
utilized animal models and 9 were human clinical studies (2 randomized controlled trials, 6 cohort
studies, and 1 case-control study).

Methodological considerations:

In vitro models are essential for preliminary screening of antimicrobial properties before
progressing to in vivo studies. In vitro models allow for controlled experimentation on bacterial
adhesion, biofilm formation, and antimicrobial efficacy under standardized conditions. Common in
vitro techniques include colony forming unit (CFU) counting, live/dead staining, crystal violet
staining, and imaging using confocal laser-scanning microscopy (CLSM) and scanning electron
microscopy (SEM). In vitro models provide valuable insights into the mechanisms of action of




antimicrobial strategies and help refine experimental conditions for subsequent in vivo studies.
Animal models and human studies both play crucial roles in evaluating the antimicrobial properties
of orthopaedic Ti implants.

Animal models of orthopaedic-device related infection (ODRI) offer controlled
environments and the ability to perform invasive procedures, providing valuable insights into the
implant’s effectiveness in preventing infections. The most frequently used animal species in the
studies are rats, rabbits, and mice, selected for their cost-effectiveness and translational relevance to
human bone physiology. For instance, Sprague-Dawley rats, New Zealand White rabbits, and
C57BL/6 mice are commonly employed due to their manageable size and well-characterized
immune responses. In addition, sheep and minipigs were also used. The most common sample size
per experimental group was n=6 for rabbits,’™ n=5-10 for rats and mice,®® and n=7 for sheep and
minipigs.” '° The inoculum (CFU and volume) used to induce infection must be appropriate for the
animal species and body region, and determined through preliminary pilot studies. Too large an
inoculum can cause sepsis and death, while too small a dose may be cleared rapidly. The time
required for infection establishment varies by species and differs from clinical cases. Factors such
as bacterial strain virulence and growth phase influence the inoculum concentration needed. The
choice of bacterial species depends on whether the model targets acute (for example,
Staphylococcus aureus) or chronic infections (such as, coagulase-negative staphylococci).
Reflecting its clinical relevance in implant-associated infections, S. aureus was the predominant
bacterial species used to induce infections (32 studies), with strains such as ATCC 25923 and
Xen29 most common. The inoculation doses to induce infections mimicking clinical conditions
vary, with typical doses being 10°-10® CFU/ml for rabbits and 10° CFU/ml for rats. Most animal
models have so far utilized an initial inoculum of planktonic bacterial cultures. Introducing mature
biofilms grown on an implant as the initial inoculum in animal models could further optimise
antimicrobial treatment strategies.™* In addition, bone remodelling kinetics differ between animals
and humans, affecting study duration. To enhance clinical relevance, implant placement should
allow weight-bearing movement. The types of implants used include rods, screws, nails, pins, and
plates, often placed in the femur or tibia to simulate clinical scenarios.***! Typical outcomes
measured include bacterial viability, infection rates, clinical outcomes, inflammatory response, and
reduction in biofilm formation. Evaluation time-points range from 1 week to several months,
depending on the study design. For instance, Zhou et al. (2017) evaluated infection reduction and
clinical outcomes over 8 weeks in a rabbit model.’

Clinical Studies often employ cohort or randomized controlled trial (RCT) designs. The
populations studied include patients undergoing orthopaedic surgeries with increased infection risk,
such as those with fractures or joint replacements. Similar to the animal studies, clinical studies
evaluated antibiotic-loaded coatings, silver coatings, and other antimicrobial strategies. For
instance, gentamicin-coated intramedullary nails and silver-coated mega prostheses have been
investigated for their efficacy in preventing infections. Among the 9 human studies evaluated, all
included clinical outcome measurements, such as patient recovery rates and implant success rates, 6
measured infection rates, and 4 assessed functional outcomes, such as mobility and pain levels.??*
Evaluation time-points range from several months to years, 1 year being a common follow-up
timepoint. For example, DeMeo et al. (2023) reported infection rates and clinical outcomes over a
follow-up period of 34.41 + 9.46 months,”® and Kawano et al. (2023) reported clinical and
functional outcomes for 5 years.**

Outcome evaluation and analytical technigues: Commonly measured outcomes for evaluating
the antimicrobial properties of Ti orthopaedic implants in animal and clinical studies include: (1)
Bacterial viability, which assesses the proportion of live versus dead bacteria to determine the
implant’s antimicrobial effectiveness (killing or inhibition). Common methods include live/dead
staining, metabolic assays, ATP quantification, and qPCR targeting viable bacteria. (2) Bacterial
adhesion quantifies the initial bacterial attachment to the implant surface, indicating how well the




implant prevents colonization. Measurement methods include CFU counting after surface
detachment by sonication and vortexing, fluorescence microscopy, crystal violet staining, and SEM
imaging. (3) Reduction in biofilm formation measures the implant’s ability to prevent or reduce
mature biofilms, which are hard to treat. Methods for assessing biofilm formation include crystal
violet staining for biofilm biomass quantification, CLSM, SEM imaging, and CFU counting from
biofilm dispersal. (4) Infection rates track the incidence and severity of infections post-
implantation to assess the clinical effectiveness of antimicrobial strategies. Methods for measuring
infection rates include clinical observation, microbiological cultures, imaging (X-ray, MRI), and
infection scoring systems. (5) Clinical outcomes assess patient health and implant success,
including recovery rates and complication rates, implant integration, and overall health outcomes
following implantation. Measurement methods include clinical examination, patient-reported
outcomes (including pain, quality of life), imaging, and complication tracking. (6) Inflammatory
response monitors local and systemic inflammatory markers to detect infections or adverse
reactions caused by the implant. Methods for assessing inflammatory response include blood tests,
histological analysis, and immunohistochemistry. Fewer studies include (7) functional outcomes to
evaluate the implant’s impact on physical function, ensuring it does not impair performance.” 2
Measurement methods include mobility tests, range of motion assessments, pain scales, and
functional scoring systems. (8) Antibiotic resistance evaluates whether bacteria exposed to the
implant develop resistance to antibiotics over time, which could compromise long-term
antimicrobial effectiveness. Measurement methods include antibiotic susceptibility testing (MIC),
detection of resistance genes, and whole-genome sequencing. Interestingly, only one of the studies
evaluated antibiotic resistance after exposure to the implant.?* Recent technological advances have
significantly enhanced the evaluation of antimicrobial properties in orthopaedic implants.
Technologies such as 3D-printing, bacterial genomic sequencing, and real-time in vivo imaging
have improved preclinical models, making them better at mimicking clinical infections and
evaluating antimicrobial materials. These advances enable more accurate and detailed assessments
of how implants interact with bacteria and the host immune system. Among the evaluated animal
studies, the most frequently employed analytical techniques were: (1) histology (90%) to examine
tissue samples for signs of infection, inflammation, and bone integration (H&E, Gram, Giemsa, and
ALP/TRAP staining were commonly used); (2) CFU counting (67%) to quantify the number of
viable bacteria on the implant surface and surrounding tissues; (3) radiographic imaging (X-ray)
(36%) to evaluate bone healing, implant integration, and signs of infection; (4) haematological
analyses (29%) of inflammatory markers (white blood cell counts (WBC), C-reactive protein
(CRP), TNF-a, and IL-6) to assess the animal’s inflammatory response to the implant; (5) micro-
computed tomography (micro-CT) (19%) to provide detailed 3D images of the bone and implant
interface; (6) microscopy for the visualisation of biofilms on implants or tissues (SEM (17%),
CLSM combined with Live/Dead® BacLight™ staining (7%)); and (7) bacterial bioluminescence
imaging using VIS (in vivo imaging system) for bacterial tracking (17%).%" 3 These methods
provide quantitative and qualitative assessments of ODRI and host response. Among the 9 human
studies evaluated, outcomes were typically evaluated by: (1) Bacterial culturing of tissue
biopsies,?> # (2) radiographic imaging for detection of osseointegration, implant stability, and
signs of implant loosening and failure;?* 2% (3) haematological analyses including complete
blood count (CBC) paired with serum analysis,?® and (4) the use of various scoring/classification
systems (such as Harris Hip Score (HHS),” Gustilo—Anderson classification for open fractures,?
Japanese Orthopaedic Association (JOA) score for spine,** ASEPSIS wound healing score,® Lower
Extremity Functional Scale (LEFS),?" Short Assessment of Patient Satisfaction (SAPS),*’ and
Implant failure modified classification by Henderson et al).*

Antimicrobial strategies: The reviewed studies employed various antimicrobial strategies,
most often including antibiotic-loaded coatings (such as gentamicin, vancomycin),** 3* antiseptic-
loaded coatings (including silver,?® 2* 28 jodine,*® chlorhexidine®?"), or antimicrobial peptides



(AMPs).% 3 3% These antimicrobial agents were often loaded in hydrogels, nanoparticles, or
nanotubes bound to the Ti implant surface. Most of the strategies demonstrated efficacy in reducing
bacterial colonization and preventing osteomyelitis. For example, gentamicin-coated implants
demonstrated significant reductions in infection rates and improved clinical outcomes in both
animal and human studies.”” * Similarly, silver-coated implants demonstrated effective
antimicrobial properties and reduced bacterial colonization without significant adverse effects.*" *2
Localized drug delivery systems, using biodegradable polymers and nanomaterials,*** provided
sustained release of antimicrobial agents, effectively reducing biofilm formation and infection rates.

In animal studies, various antimicrobial strategies have been evaluated for their
effectiveness in preventing infections associated with Ti orthopaedic implants. For instance, the use
of hydroxypropyltrimethyl ammonium chloride chitosan coatings on Ti exhibited significant
infection control and reduced bone destruction.*® Similarly, polymeric nanofiber coatings loaded
with antibiotics significantly reduced infection rates and biofilm formation while enhancing implant
integration.®® The combination of gentamicin and vancomycin in fluorine- and phosphorus-doped
nanotubular oxide layers effectively decreased biofilm density without compromising implant
integration.*” Other studies highlighted the benefits of surface modifications, such as the
incorporation of AMPs and angiogenic sequences, which reduced infection rates and inflammatory
markers while improving vascularization and osseointegration.”® Additionally, the use of oligo-
ampicillin hydrogels prevented bacterial colonization and osteomyelitis,*® and an AMP-based
coating (OP-145) significantly reduced bacterial colonization and infection signs.® Various other
strategies, including silver coatings, hierarchical TiO, nanotubes loaded with cinnamaldehyde, and
antibiotic-loaded hydrogels, also demonstrated promising results in reducing infection rates, biofilm
formation, and inflammatory responses.* >* %2

Human studies have also explored the efficacy of different antimicrobial coatings on
orthopaedic implants. For example, gentamicin-coated nails were effective in curing infections,
promoting bone healing, and yielding good patient-reported outcomes.?’ Similarly, antibiotic-loaded
hydrogel coatings significantly reduced fracture-related infections, although some complications
were noted.?? Silver-coated implants demonstrated lower infection rates and improved clinical
outcomes in various studies.”* #° The use of iodine-coated Ti implants revealed a lower infection
incidence in both prevention and treatment cases, with no significant difference between one-stage
and two-stage replacements.®® In addition, antibiotic-loaded resorbable hydrogels significantly
reduced surgical site infections without adverse events.?

Conclusion: Most studies reviewed demonstrate a statistically and clinically significant reduction
in infection rates and improvement in clinical outcomes with antimicrobial coatings on orthopaedic
Ti implants. A multi-tiered approach incorporating in vitro, animal, and clinical studies is essential
for evaluating the antimicrobial properties of orthopaedic Ti implants, ensuring safety and efficacy
before clinical introduction. Recent technological advances have further improved the evaluation
process, enabling more accurate and detailed assessments. Most animal models of ODRI use S.
aureus, but future studies should also include other clinically relevant bacteria including coagulase-
negative staphylococci, a common cause of chronic infections. Future research should also focus on
antibiotic resistance development, which can significantly compromise the long-term effectiveness
of antimicrobial strategies in orthopaedic implants. This will enhance the overall success and
sustainability of antimicrobial treatments in orthopaedic applications.
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