ICM 2025 Question B17: "Does biofilm form in the synovial fluid?"

Tom Coenye, Hao Shen, Jeroen Neyt, Alberto Carli, Holger Rohde, Noreen Hickok

Response/Recommendation: The available data strongly suggests that suspended biofilm aggregates of different *Staphylococcus* species form in synovial fluid *in vitro*. While there are fewer studies dealing with other species and/or *in vivo* biofilm formation, the available evidence strongly suggests that the majority of PJI pathogens can form suspended biofilms in synovial fluid, also *in vivo*.

Level of Evidence: Strong

Delegate Vote: Agree: [% vote], Disagree: [%], Abstain: [%]

Rationale: Central to the pathogenesis of prosthetic joint infections (PJIs) is the formation of microbial biofilms, which are structured communities of microorganisms encased in a self-produced extracellular matrix. Biofilm-associated microorganisms typically exhibit reduced susceptibility to a wide range of antimicrobial agents and are shielded from immune responses. As a consequence, eradication of such biofilms is difficult. Historically, microbiologists and clinicians have focused on surface-attached biofilms (such as biofilms attaching to implant surfaces), but recent work has highlighted that *in vivo* biofilms often occur as non-surface-attached aggregates, for example in the respiratory tract of people with acute and chronic lung infections^{1; 2}. To answer this question a comprehensive literature search was conducted using the search words "biofilm", "synovial fluid", "synovia", and "joint fluid" within PubMed and Scopus, which initially identified 98 potentially relevant unique studies, screened by two independent reviewers, of which 42 were included for evaluation.

Whether such non-surface associated/suspended biofilm aggregates also form in synovial fluid has been addressed in a number of *in vitro* studies. However, methodologies and models used frequently differ between studies, making direct comparisons difficult. Aggregation has been studied in diluted and undiluted human, bovine, porcine, and equine synovial fluid³⁻⁶, while several artificial/synthetic synovial fluid media have also been developed to study aggregation^{7; 8}. Most studies so far have focused on *Staphylococcus aureus*, where formation of suspended biofilms (aggregation) was observed microscopically for the majority of *S. aureus* strains investigated (both MRSA and MSSA) (e.g. ^{5; 8-10}). This phenotype was also observed for a range of coagulase-negative staphylococci (including *Staphylococcus epidermidis*, *Staphylococcus lugdunesis* and *Staphylococcus capitis*)^{4; 7; 8; 10}. More recently, a wider range of organisms, including Gramnegatives like *Pseudomonas aeruginosa*, *Escherichia coli*, *Klebsiella pneumoniae*, and *Proteus mirabilis*, Gram-positives such as *Streptococcus agalactiae*, *Enterococcus faecalis*, and *Cutibacterium acnes*, as well as various *Candida* spp. have been confirmed to be able to form aggregates in synovial fluid ^{3; 8; 10-12}.

Currently there is only limited *in vivo* data that confirms biofilm formation in the synovial fluid. Confocal microscopy on clinical synovial fluid samples of six patients with a confirmed PJI provides direct evidence for *in vivo* biofilm formation in synovial fluid, as biofilm aggregates could be observed in samples obtained from patients infected with *S. aureus* or *S. lugdunesis* (but not in samples obtained from a single patient infected with *Prevotella bivia*)¹³. Using material recovered from PJI, SEM analysis of implant-attached biofilm and floating aggregate morphology was described¹⁴, although aggregate size was not presented. Indirect evidence for the formation of

suspended *S. aureus* biofilm aggregates in synovial fluid comes from the observation that clinical synovial fluid samples from patients with a confirmed *S. aureus* PJI demonstrate elevated antibody levels to an *S. aureus* biofilm antigen, suggesting that these samples contain an *S. aureus* biofilm ¹⁵. Other indirect evidence comes from the observation that the sensitivity of microbiological detection in clinical synovial fluid samples significantly increased upon pre-treatment with dithiotreitol, which increases detachment of bacteria from biofilm aggregates ¹⁶.

Data on antimicrobial susceptibility of synovial fluid aggregates are limited, but do suggest that these suspended biofilm-like aggregates (similar to surface-attached biofilms), exhibit a drastically reduced susceptibility to a wide range of antibiotics, at least *in vitro*^{5; 8; 17}.

With regard to the mechanisms of biofilm aggregation, experimental data are limited to *S. aureus*. Various studies reported that aggregation of *S. aureus* is mediated by binding to fibrinogen and/or fibronectin^{5; 14; 18; 19}. Hyaluronic acid was also noted to contribute to the formation of synovial fluid aggregates of *S. aureus*^{6; 14}.

<u>Conclusion</u>: All of the available evidence strongly suggests that the majority of PJI pathogens can form suspended biofilms in synovial fluid, albeit that the extent of biofilm formation as well as the biofilm morphology (such as aggregate size) may differ between different microorganisms. The limited data currently available suggests these suspended biofilms demonstrate drastically reduced susceptibility to antimicrobial agents, and as such could influence treatment outcomes.

References:

- 1. Sauer K, Stoodley P, Goeres DM, et al. 2022. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol 20:608-620.
- 2. Kolpen M, Kragh KN, Enciso JB, et al. 2022. Bacterial biofilms predominate in both acute and chronic human lung infections. Thorax 77:1015-1022.
- 3. Gilbertie JM, Schnabel LV, Hickok NJ, et al. 2019. Equine or porcine synovial fluid as a novel ex vivo model for the study of bacterial free-floating biofilms that form in human joint infections. PLoS One 14:e0221012.
- 4. Perez K, Patel R. 2015. Biofilm-like aggregation of Staphylococcus epidermidis in synovial fluid. J Infect Dis 212:335-336.
- 5. Dastgheyb S, Parvizi J, Shapiro IM, et al. 2015. Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment. J Infect Dis 211:641-650.
- 6. Ibberson CB, Parlet CP, Kwiecinski J, et al. 2016. Hyaluronan Modulation Impacts Staphylococcus aureus Biofilm Infection. Infect Immun 84:1917-1929.
- 7. Stamm J, Weisselberg S, Both A, et al. 2022. Development of an artificial synovial fluid useful for studying Staphylococcus epidermidis joint infections. Front Cell Infect Microbiol 12:948151.
- 8. De Bleeckere A, van Charante F, Debord T, et al. 2024. A novel synthetic synovial fluid model for investigating biofilm formation and antibiotic susceptibility in prosthetic joint infections. Microbiol Spectr:e0198024.
- 9. Staats A, Burback PW, Eltobgy M, et al. 2021. Synovial Fluid-Induced Aggregation Occurs across Staphylococcus aureus Clinical Isolates and is Mechanistically Independent of Attached Biofilm Formation. Microbiol Spectr 9:e0026721.
- 10. Siddiqui H, Jasiak A, Doub JB. 2024. Do All Prosthetic Joint Infection Clinical Isolates Form Aggregates in Synovial Fluid That Are Resistant to Antibiotic Agents? Surg Infect (Larchmt) 25:71-76.
- 11. Macias-Valcayo A, Staats A, Aguilera-Correa JJ, et al. 2021. Synovial Fluid Mediated Aggregation of Clinical Strains of Four Enterobacterial Species. Adv Exp Med Biol 1323:81-90.

- 12. Haeberle AL, Greenwood-Quaintance KE, Zar S, et al. 2024. Genotypic and phenotypic characterization of Enterococcus faecalis isolates from periprosthetic joint infections. Microbiol Spectr 12:e0056524.
- 13. Bidossi A, Bottagisio M, Savadori P, et al. 2020. Identification and Characterization of Planktonic Biofilm-Like Aggregates in Infected Synovial Fluids From Joint Infections. Front Microbiol 11:1368.
- 14. Knott S, Curry D, Zhao N, et al. 2021. Staphylococcus aureus Floating Biofilm Formation and Phenotype in Synovial Fluid Depends on Albumin, Fibrinogen, and Hyaluronic Acid. Front Microbiol 12:655873.
- 15. Harro JM, Shirtliff ME, Arnold W, et al. 2020. Development of a Novel and Rapid Antibody-Based Diagnostic for Chronic Staphylococcus aureus Infections Based on Biofilm Antigens. J Clin Microbiol 58.
- 16. Drago L, Romano D, Fidanza A, et al. 2023. Dithiotreitol pre-treatment of synovial fluid samples improves microbiological counts in peri-prosthetic joint infection. Int Orthop 47:1147-1152.
- 17. Dastgheyb SS, Hammoud S, Ketonis C, et al. 2015. Staphylococcal persistence due to biofilm formation in synovial fluid containing prophylactic cefazolin. Antimicrob Agents Chemother 59:2122-2128.
- 18. Dastgheyb SS, Villaruz AE, Le KY, et al. 2015. Role of Phenol-Soluble Modulins in Formation of Staphylococcus aureus Biofilms in Synovial Fluid. Infect Immun 83:2966-2975.
- 19. Pestrak MJ, Gupta TT, Dusane DH, et al. 2020. Investigation of synovial fluid induced Staphylococcus aureus aggregate development and its impact on surface attachment and biofilm formation. PLoS One 15:e0231791.