B15: “Are we certain that biofilms are the main challenge of treating implant-associated infection?”
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RESPONSE/RECOMMENDATION: Yes, implant-associated infections are notoriously difficult to treat,
often leading to chronic complications, implant failure, and high healthcare costs. Microbial biofilms are widely
recognized as the primary challenge in managing these clinical infections, and preclinical studies have
demonstrated that biofilm fulfills Koch's postulates as the etiologic factor in implant-associated infections'.
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Rationale: Implant-associated infections (IAls) represent a major clinical challenge, frequently resulting in
prolonged patient morbidity, implant failure, and substantial healthcare costs. To synthesize current insights, our
systematic review process began with 1,522 articles identified through PubMed keyword searches. Following
title screening, abstract review, and full-text evaluation, 135 articles were selected, with 80 primary research
studies and systematic reviews ultimately meeting inclusion criteria. Among these, biofilm formation emerged
as a dominant theme: 33 studies specifically investigated Staphylococcus species (notably S. aureus and S.
epidermidis) and their role in biofilm development on orthopedic implants, underscoring its critical contribution
to periprosthetic infections. Antibiotic resistance and tolerance were addressed in 16 studies, while 9 additional
works proposed novel therapeutic strategies to combat these issues. Implant material design and its relationship
to infection risk were explored in 9 studies, and 12 studies focused on unraveling the pathogenesis and
molecular mechanisms driving bacterial infections. A subset of 8 studies analyzed bacterial behavior and host
immune response interactions, supplemented by 5 studies examining inflammation and immune dynamics.
Preclinical validation was provided by 8 studies employing in vivo infection models, and 6 works advanced
diagnostic and identification methodologies. Finally, 5 studies addressed miscellaneous topics, collectively
illustrating the breadth of research addressing IAls.

Biofilm formation and reduced antimicrobial susceptibility: Biofilms are structured microbial communities
embedded in an extracellular polymeric substances (EPS) composed of polysaccharides, proteins, and
extracellular DNA (eDNA)*™. Staphylococcus spp., particularly S. aureus and S. epidermidis, commonly cause
TAIs due to their robust biofilm-forming capabilities””. These pathogens adhere to implant surfaces and
components of the host extracellular matrix via a wide array of surface adhesins such as microbial surface
components recognizing adhesive matrix molecules (MSCRAMMs) and secretable expanded repertoire
adhesive molecules (SERAMs)), autolysin/adhesins, wall teichoic acids (WTA) and lipoteichoic acids (LTA)*'"
12 The icaADBC operon, responsible for synthesizing polysaccharide intercellular adhesin (PIA), contributes to
the intercellular adhesion within biofilms™'*""*>. However, biofilm formation can also occur through PIA-
independent mechanisms, including accumulation-associated protein (Aap) or extracellular eDNA'®. Biofilms
confer protection against antibiotics through multiple mechanisms: (1) reduced metabolic activity and reduced
growth rates in cells from deeper layers, (2) EPS acts as a physical barriers, and (3) persister/dormant cell
variants tolerant to antibiotics'”"'°. For example, S. aureus biofilms exhibit MIC90 values up to 245 pg/mL for
ciprofloxacin, far exceeding planktonic MICs (0.07-2.80 pg/mL)*’. Similarly, S. epidermidis biofilms resist
vancomycin and daptomycin, even at supratherapeutic doses>' . Rifampin and doxycycline show improved
biofilm penetration, though eradication typically requires prolonged high-dose regimens®***. Antoci et al.



demonstrated that vancomycin-coated titanium alloys prevent S. epidermidis colonization but are ineffective
against Escherichia coli, underscoring antibiotic specificity?®. Some studies confirmed the clinical significance
of biofilms, Sevensson Malchau et al. showed that patients with prosthetic joint infection (PJI) caused by strong
biofilm-producing staphylococci had a fivefold greater risk of recurrent infection®’. Morgenstern et al. linked
strong biofilm production in S. epidermidis to higher osteomyelitis treatment failure rates>’, and Hagstrand
Aldman et al. linked strong biofilm production in S. lugdunensis to PJI recurrence®®. Taha et al. reported that
combining povidone-iodine with vancomycin reduce S. aureus in immature biofilms. This dynamic was
visualized in real-time by Xie et al. through longitudinal intravital imaging of osteomyelitis. **~.

Biofilms actively suppress host immune responses to establish chronic infections. S. aureus biofilms secrete
virulence factors such as phenol-soluble modulins (PSMs) and leukocidins, which impair neutrophil chemotaxis
and promote immunosuppressive IL-10 production®~*. Neutrophils trapped within biofilms undergo NETosis,
releasing eDNA that stabilizes the biofilm matrix">. Macrophages attempting phagocytosis often fail to
penetrate biofilms and instead adopt anti-inflammatory phenotypes, further impairing bacterial clearance
Biofilm persistence is strongly linked to chronic infections. In PJIs, biofilms survive despite aggressive surgical
debridement and systemic antibiotics*”>’. Animal models demonstrate that S. aureus biofilms on titanium (Ti)
implants resist immune clearance for weeks, even in immunocompetent hosts***'. A “race for the surface” co-
culture study, showed that when S. aureus establishes a biofilm, it disrupts macrophage function and induces
cell death through upregulation of FcyR and TLR-2 receptors, NF-kB signaling, and NOX2-mediated reactive
oxygen species production®. This leads to a persistent biofilm phenotype with upregulated cIfA, icaA, and
sarA, and downregulated agrA, hld, and lukAB. The upregulation of lipA supports intracellular survival.
Clinically, this results in bacterial colonization of the implant and persistence of intracellular bacteria in
periprosthetic tissues, contributing to chronic infection*>*. The mazEF toxin-antitoxin system in S. aureus
further enhances chronicity by promoting biofilm antibiotic tolerance and modulating virulence during acute
phases'”**. Bell et al. reported that S. aureus biofilms induce PD-1 ligands and IL-1 receptor antagonist (IL-
1RA), suppressing T-cell responses™ . Nishitani et al. used a murine tibia model quantified biofilm maturation
and observing peak bacterial loads 3-7 days post-implantation40. Morales-Laverde et al. identified strain-
specific expression of adhesion genes (e.g., clf4, fnbA) that modulate biofilm formation by enhancing bacterial
adherence and aggregation, and influence host immune responses by evading immune detection and promoting
chronic infection™.
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Detecting biofilm-associated bacteria presents significant diagnostic challenges: Conventional culture
methods often struggle to detect bacteria inside biofilms due to their sessile nature and low metabolic
activity***’. However, sonication of explanted implants improves sensitivity by dislodging biofilm bacteria, as
demonstrated in a landmark study where sonicate-fluid cultures detected 78.5% of PJIs versus 60.8% with
tissue cultures*’. Molecular techniques like PCR-mass spectrometry (Ibis T5000) and nuclease-based probes
(e.g., AttoPolyT) enable rapid, culture-free detection’®*. For example, the AttoPolyT probe targets S. aureus
nuclease activity, achieving 90% accuracy in synovial fluid samples**~’. More recently the use of isothermal
microcalorimetry (IMC) to detect microorganisms in tissue samples and synovial fluid was evaluated’'>* The
accuracy of IMC was found to be at least as good as culture, but IMC delivers results much faster. Weaver et al.
used whole-genome shotgun sequencing to uncover polymicrobial biofilms in PJIs, challenging traditional
monoculture paradigms™’. Zatorska et al. correlated elevated eDNA levels in clinical S. aureus isolates with
greater amounts of biofilm formation, suggesting eDNA as a diagnostic marker’.

Therapeutic strategies



1) Antibiotics: Susceptibility testing methods minimum biofilm inhibitory concentration (MBIC) and minimum
biofilm eradication concentration (MBEC) are being explored to guide therapy in PJI>°. Rifampin and
doxycycline are preferred for staphylococcal biofilms due to penetration into EPS**#*"%* However, resistance
emerges rapidly if used as monotherapy. Combinations like rifampin + vancomycin or daptomycin + linezolid
show synergy in static and dynamic biofilm models™™’.

2) Phage Therapy: Phages disrupt biofilms by lysing bacterial cells and degrading EPS and are being used for a
range of difficult-to-treat infections. The use of phages for treating PJI has recently been reviewed **’

3) Local Therapies: (i) Antimicrobial Coatings: Vancomycin-modified titanium and chitosan-infused surfaces

reduce biofilm adhesion®®***®'. (ii)Biofilm Disruptors: DNase and EDTA degrade eDNA and chelate metal ions,
respectively, weakening biofilm structure®>**%. (iii)Electromagnetic Induction: A portable device heating Ti
implants to 70°C reduced S. aureus biofilms by 3-6 log;o CFU®.

4) Immunomodulation: The host pathways (e.g., JAK/STAT) may reduce biofilm virulence. Turner et al. found
that sodium salicylate inhibits S. aureus agr, reducing toxin production®. Sun et al. developed simvastatin-
hydroxyapatite coatings that inhibit biofilm formation and enhance osteogenesis in rat models®®. Ding et al.
developed a nanoparticle system that disrupts bacterial iron metabolism, enhancing the effectiveness of
cefiderocol against P, aeruginosa biofilms®’. Biomaterial modifications, such as vancomycin-povidone-iodine
coating” and camel peptides, show efficacy against staphylococcal biofilms®. Non-antibiotic interventions,
including electromagnetic heating® and biofilm-focused clinical guidelines, highlight multidisciplinary

. 69
solutions™”.

Variability and exceptions: While biofilms dominate [Als, exceptions exist: 1)Non-biofilm pathogens:
Escherichia coli colonizes implants via flagellar motility rather than biofilms®®. Small-colony variants (SCVs):
SCVs of S. aureus persist intracellularly, evading antibiotics and immune cells®*. 2)Strain-specific differences:
S. epidermidis PII isolates often carry icaADBC and IS256, while commensal strains lack these genes®.
Fernandes & Dias reported Candida krusei PJI, as a rare non-bacterial biofilm case’. Hagstrand Aldman et al.
linked strong biofilm production in S. lugdunensis to PJI recurrence®.

Clinical and research implications:

1) Standardized models: Current in vitro models (e.g., microtiter plates) may lack physiological relevance. The
use of host cells and proteins and dynamic models (e.g., CDC biofilm reactor) could be mimic in vivo scenarios
where host-bacteria interactions, shear stress, and nutrient gradients are relevant, improving translational
validity”""%. The use of synovial fluid-based biofilm models (using human, animal or synthetic synovial fluid)
allows to study biofilm aggregates and can further increase physiological relevance’"'.

2) Personalized Medicine: Genomic profiling of biofilm-related genes (e.g., ica, agr) could guide therapy’".
Chen et al. identified fnbA and cIfA as predictors of S. aureus PJI severity”.

3) Biomaterial Innovations: Magnesium Alloys: Degradable magnesium implants induce localized alkalization,
inhibiting P. aeruginosa biofilms’®. Liquid-Infused Surfaces (LIS): Chitosan-conjugated LIS coatings repelled
bacteria while promoting osteoblast adhesion®.

4) Adjunctive Strategies include immunotherapy: Anti-staphylococcal vaccines targeting biofilm antigens (e.g.,
PNAG) are in preclinical trials’’. Saeed et al. outlined ICM consensus guidelines, prioritizing biofilm-targeted
research’®. MacConnell et al. reviewed novel irrigation systems (e.g., XPERIENCE™) combining pulsatile
lavage with antimicrobials*"%""’,

Conclusion: Biofilms are the central challenge in IAls, driving antibiotic resistance, immune evasion, and
chronicity. While exceptions exist, such as non-biofilm-forming pathogens or intracellular persistence, the
preponderance of evidence from 75 studies underscores biofilm dominance. Advances in diagnostics (e.g.,



sonication, nuclease probes), therapies (e.g., phage-antibiotic combinations, biomaterials), and personalized
approaches (e.g., genomic profiling) are critical to improving outcomes. Future research must prioritize
standardized physiological in vivo models, rapid diagnostics, and clinical trials of innovative biofilm-targeting
(including biofilm-disrupting) agents. As Giordano and Giannoudis aptly noted, "The battle against biofilm is a
marathon, not a sprint," requiring multidisciplinary collaboration to translate laboratory breakthroughs into

clinical success®.
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