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RESPONSE/RECOMMENDATION: Yes, there is a substantial body of in vitro and in vivo 

evidence that PJI pathogens are capable of infecting and residing in the intracellular space of 

osteoblastic cells, although the duration of this intracellular infection is variable with studies 

estimating persistence ranging from 24 hours to weeks. Much of the available current evidence is of 

S. aureus, but a diverse array of other pathogens has also been identified as infecting osteoblasts.  

LEVEL OF EVIDENCE: Strong 

DELEGATE VOTE: Agree: [% vote], Disagree: [%], Abstain: [%] 

________________________________________________________________________________ 

RATIONALE: Osteoblast lineage cells, including osteoblast progenitors, bone lining cells, mature 

osteoblasts, and osteocytes, constitute the vast majority of cells in hard bone tissue, with osteocytes 

alone comprising 90-95% of these1. Intracellular infection of this lineage is an important potential 

mechanism whereby pathogens may escape antimicrobial treatments, as recently summarized for the 

most prevalent pathogen in human osteomyelitis, Staphylococcus aureus2. The long-lived nature of 

osteocytes in particular, also lends a potentially long-term niche for bacteria that phenotypically adapt 

to low-growth phenotypes, such as small colony variants (SCV). These bacteria may also escape 

detection during diagnosis if the infected tissue is not suitably sampled and processed, and thus may 

present as culture-negative infections. The ability of bacteria to survive in viable ‘deep bone’ cells 

(potentially in otherwise ‘healthy’ bone) also informs the need for appropriate bony debridement 

during surgical management or other treatment modality to address these bacteria, with the risk of 

chronic infection if this is not achieved. 

A comprehensive literature search was conducted of PubMed and Embase, initially identifying 

1358 potentially relevant unique studies, screened by two independent reviewers, of which 200 were 

selected for full-text review and 89 included for evaluation. We defined ‘persistence’ as a period of 

at least 24 hours post-infection where there was evidence of both viable host cells containing viable 

intracellular bacteria. We included peer-reviewed, original research studies of all osteoblast lineage 

cells, as well as informative case reports and systematic reviews. Several cases of chronic 

osteomyelitis detailed osteoblastic infection from bone biopsy: 1) in a 53 year old (y.o.) female with 

the obligate anaerobe Prevotella melanginoganica visible in osteocytes3; 2) a case of Gram-positive 

cocci in viable osteoblasts and osteocytes established by histochemistry and transmission electron 

microscopy (TEM) in a 73 y.o. male4; 3) S. aureus was present in osteoblasts from a 14 y.o. boy5. 

The majority of in vitro studies demonstrated viable intracellular bacteria in host cells 

following a short infection period of 45-180 min, followed by removal of extracellular bacteria, and 

then assessment of colony forming unit (CFU) formation following plating of host cell lysates after 

at least 24 hours. An indication of host cell viability following infection was also a requirement for 

inclusion. Of the included studies, 68 (76%) examined intracellular S. aureus, well known to be a 

facultative intracellular pathogen, with a multitude of both methicillin resistant (MRSA) and sensitive 

(MSSA) strains, clinical isolates, and standard laboratory strains. Seven studies examined S. aureus 

infection of the well-characterized mouse osteoblast cell line MC3T3-E16-12, with intracellular 

persistence shown for up to 28 days7. Other mouse cell line infection studies were performed in 

osteoblast-like NRG13 and OB1 cell lines14. A single rat mature osteoblast cell line, UMR-106, was 



utilized to demonstrate S. aureus intracellular persistence for up to 8 days15, while rat primary 

calvarial osteoblasts were used to show persistence for 21 days16.  Four studies examined S. aureus 

infection of mouse primary (calvaria-derived) osteoblasts17-20, with persistence demonstrated between 

24-48 hours.  The majority of human cell line studies were performed in MG-63 osteosarcoma cells, 

an immature osteoblast model, which undergoes limited, if any, osteogenic differentiation. In total, 

25 studies examined S. aureus infection of MG-63, most presenting evidence for a 24-48 hours post-

infection period 9; 21-40 with several extending observations for 7-8 days41-43.  Five further studies were 

performed in the human mature osteoblast cell line, SaOS-2, which has strong osteogenic potential, 

with persistence demonstrated between 24-72 hours44-48.  A single group used SV-40 transformed 

human osteoblasts49; 50 to study infection. Fifteen studies utilized human primary osteoblasts, derived 

from trabecular bone explant cultures, as the host cell type to examine S. aureus intracellular 

persistence. This was most commonly demonstrated between 24-48 hours39; 51-60, while some studies 

extended observations to a week or more11; 61-63, and up to 21 days in a study by Tuchscherr et al.64. 

This group also demonstrated the phenotypic switch of S. aureus to an SCV phenotype, linked to 

chronic infections53. 

Osteocyte cell models have also been used to demonstrate S. aureus persistence. Yang et al.65 

demonstrated S. aureus infection and persistence in human primary osteoblast-derived osteocytes, 

associated with a phenotypic switch to SCVs over a 6 day infection period. More recently, SaOS-2 

cells differentiated to an osteocyte-like phenotype have also been utilized, showing S. aureus 

persistence for up to 21 days48; 66-69. Mouse MLO-Y4 osteocyte-like cells also supported S. aureus 

infection 12. Viable osteocyte infection by S. aureus was also shown in a human ex vivo bone model 

and in PJI patient bone specimens65. de Mesy Bentley and colleagues showed by TEM that S. aureus 

invades the osteocyte lacunocanalicular network (OCLN), appearing to deform in order to enter 

canaliculi in a mouse PJI model70 and in a human case study of diabetic foot infection71. This process 

was shown in an ex vivo mouse bone model72, and OCLN immunostaining of S. aureus was reported 

in several other, both paediatric and adult, cases of osteomyelitis73. Although infection of living 

osteoblasts/osteocytes in these latter studies was not reported, they are supportive of S. aureus 

accessing these cell types.  

In addition to S. aureus, staphylococcal species S. argenteus and coagulase-negative S. 

pseudintermedius were shown to infect MG-63 cells for up to 7-10 days37; 43, and S. epidermidis was 

shown to infect human primary osteoblasts11; 58 and MC3T3-E1 cells  for up to 10 days11; 74. Another 

common periprosthetic joint infection isolate, Cutibacterium acnes was also shown to persist in MG-

63 cells for up to 96 hours, becoming undetectable after this time point75. Gram-negative species 

Streptococcus gordonii (in MG-63)36, Salmonella Dublin19 and P. melanginoganica3 have also been 

shown to persist in osteoblastic cells. Pathogens associated with periodontitis have also been 

demonstrated as tropic for osteoblasts, including Aggregatibacter actinomycetemcomitans (in MG-

63)76, and Porphyromonas gingivalis, shown in mouse primary osteoblast models77-79 and in situ in 

osteoblasts and osteocytes of alveolar bone in a mouse model 80. Several Mycobacterium species have 

been shown to persist in osteoblasts in vitro: Mycobacterium tuberculosis in MG-6338, SaOS-2 cells81 

and human primary osteoblasts82, and M. bovis in MC3T3-E1 cells (up to 7 days)83. Arguably most 

directly supportive of the affirmative to this question is the demonstration of the obligate intracellular 

pathogen Chlamydia pneumoniae infection and persistence in the human osteoblastic hFOB 1.19 cell 

line84 and in SaOS-2 cells85. Finally, intra-osteoblastic (SaOS-2, MG-6386; MC3T3-E187; 88; mouse 

primary osteoblast87) and intra-osteocyte (MLO-Y489; 90) infection was demonstrated with the 

causative pathogen of osteoarticular brucellosis, Brucella abortus, as well as other species B. suis, B. 

melitensis and B. canis 86. 

Conclusion: The ability of pathogens to invade and reside in host cells is widespread and this 

also occurs in the context of bone infection. There is overwhelming evidence that pathogens including 

S. aureus, coagulase-negative staphylococci, Brucella species, Chlamydia, and a number of other 

pathogenic species are capable of infecting osteoblast lineage cells. 
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