Question B9: Can bacteria survive in the intracellular space of osteoblasts?

Gerald J. Atkins, Claudia Siverino, Alexander W. Burns, James Slover, Volker Alt, Anil Aurora Bingyun Li, Edward M. Schwarz

RESPONSE/RECOMMENDATION: Yes, there is a substantial body of *in vitro* and *in vivo* evidence that PJI pathogens are capable of infecting and residing in the intracellular space of osteoblastic cells, although the duration of this intracellular infection is variable with studies estimating persistence ranging from 24 hours to weeks. Much of the available current evidence is of *S. aureus*, but a diverse array of other pathogens has also been identified as infecting osteoblasts.

LEVEL OF EVIDENCE: Strong

DELEGATE VOTE: Agree: [% vote], Disagree: [%], Abstain: [%]

RATIONALE: Osteoblast lineage cells, including osteoblast progenitors, bone lining cells, mature osteoblasts, and osteocytes, constitute the vast majority of cells in hard bone tissue, with osteocytes alone comprising 90-95% of these¹. Intracellular infection of this lineage is an important potential mechanism whereby pathogens may escape antimicrobial treatments, as recently summarized for the most prevalent pathogen in human osteomyelitis, *Staphylococcus aureus*². The long-lived nature of osteocytes in particular, also lends a potentially long-term niche for bacteria that phenotypically adapt to low-growth phenotypes, such as small colony variants (SCV). These bacteria may also escape detection during diagnosis if the infected tissue is not suitably sampled and processed, and thus may present as culture-negative infections. The ability of bacteria to survive in viable 'deep bone' cells (potentially in otherwise 'healthy' bone) also informs the need for appropriate bony debridement during surgical management or other treatment modality to address these bacteria, with the risk of chronic infection if this is not achieved.

A comprehensive literature search was conducted of PubMed and Embase, initially identifying 1358 potentially relevant unique studies, screened by two independent reviewers, of which 200 were selected for full-text review and 89 included for evaluation. We defined 'persistence' as a period of at least 24 hours post-infection where there was evidence of both viable host cells containing viable intracellular bacteria. We included peer-reviewed, original research studies of all osteoblast lineage cells, as well as informative case reports and systematic reviews. Several cases of chronic osteomyelitis detailed osteoblastic infection from bone biopsy: 1) in a 53 year old (y.o.) female with the obligate anaerobe *Prevotella melanginoganica* visible in osteocytes³; 2) a case of Gram-positive cocci in viable osteoblasts and osteocytes established by histochemistry and transmission electron microscopy (TEM) in a 73 y.o. male⁴; 3) *S. aureus* was present in osteoblasts from a 14 y.o. boy⁵.

The majority of *in vitro* studies demonstrated viable intracellular bacteria in host cells following a short infection period of 45-180 min, followed by removal of extracellular bacteria, and then assessment of colony forming unit (CFU) formation following plating of host cell lysates after at least 24 hours. An indication of host cell viability following infection was also a requirement for inclusion. Of the included studies, 68 (76%) examined intracellular *S. aureus*, well known to be a facultative intracellular pathogen, with a multitude of both methicillin resistant (MRSA) and sensitive (MSSA) strains, clinical isolates, and standard laboratory strains. Seven studies examined *S. aureus* infection of the well-characterized mouse osteoblast cell line MC3T3-E1⁶⁻¹², with intracellular persistence shown for up to 28 days⁷. Other mouse cell line infection studies were performed in osteoblast-like NRG¹³ and OBβ1 cell lines¹⁴. A single rat mature osteoblast cell line, UMR-106, was

utilized to demonstrate *S. aureus* intracellular persistence for up to 8 days¹⁵, while rat primary calvarial osteoblasts were used to show persistence for 21 days¹⁶. Four studies examined *S. aureus* infection of mouse primary (calvaria-derived) osteoblasts¹⁷⁻²⁰, with persistence demonstrated between 24-48 hours. The majority of human cell line studies were performed in MG-63 osteosarcoma cells, an immature osteoblast model, which undergoes limited, if any, osteogenic differentiation. In total, 25 studies examined *S. aureus* infection of MG-63, most presenting evidence for a 24-48 hours post-infection period ^{9; 21-40} with several extending observations for 7-8 days⁴¹⁻⁴³. Five further studies were performed in the human mature osteoblast cell line, SaOS-2, which has strong osteogenic potential, with persistence demonstrated between 24-72 hours⁴⁴⁻⁴⁸. A single group used SV-40 transformed human osteoblasts^{49; 50} to study infection. Fifteen studies utilized human primary osteoblasts, derived from trabecular bone explant cultures, as the host cell type to examine *S. aureus* intracellular persistence. This was most commonly demonstrated between 24-48 hours^{39; 51-60}, while some studies extended observations to a week or more^{11; 61-63}, and up to 21 days in a study by Tuchscherr *et al.*⁶⁴. This group also demonstrated the phenotypic switch of *S. aureus* to an SCV phenotype, linked to chronic infections⁵³.

Osteocyte cell models have also been used to demonstrate *S. aureus* persistence. Yang *et al.*⁶⁵ demonstrated *S. aureus* infection and persistence in human primary osteoblast-derived osteocytes, associated with a phenotypic switch to SCVs over a 6 day infection period. More recently, SaOS-2 cells differentiated to an osteocyte-like phenotype have also been utilized, showing *S. aureus* persistence for up to 21 days^{48; 66-69}. Mouse MLO-Y4 osteocyte-like cells also supported *S. aureus* infection ¹². Viable osteocyte infection by *S. aureus* was also shown in a human *ex vivo* bone model and in PJI patient bone specimens⁶⁵. de Mesy Bentley and colleagues showed by TEM that *S. aureus* invades the osteocyte lacunocanalicular network (OCLN), appearing to deform in order to enter canaliculi in a mouse PJI model⁷⁰ and in a human case study of diabetic foot infection⁷¹. This process was shown in an *ex vivo* mouse bone model⁷², and OCLN immunostaining of *S. aureus* was reported in several other, both paediatric and adult, cases of osteomyelitis⁷³. Although infection of living osteoblasts/osteocytes in these latter studies was not reported, they are supportive of *S. aureus* accessing these cell types.

In addition to S. aureus, staphylococcal species S. argenteus and coagulase-negative S. pseudintermedius were shown to infect MG-63 cells for up to 7-10 days^{37; 43}, and S. epidermidis was shown to infect human primary osteoblasts^{11; 58} and MC3T3-E1 cells for up to 10 days^{11; 74}. Another common periprosthetic joint infection isolate, Cutibacterium acnes was also shown to persist in MG-63 cells for up to 96 hours, becoming undetectable after this time point⁷⁵. Gram-negative species Streptococcus gordonii (in MG-63)³⁶, Salmonella Dublin¹⁹ and P. melanginoganica³ have also been shown to persist in osteoblastic cells. Pathogens associated with periodontitis have also been demonstrated as tropic for osteoblasts, including Aggregatibacter actinomycetemcomitans (in MG-63)⁷⁶, and *Porphyromonas gingivalis*, shown in mouse primary osteoblast models⁷⁷⁻⁷⁹ and *in situ* in osteoblasts and osteocytes of alveolar bone in a mouse model ⁸⁰. Several Mycobacterium species have been shown to persist in osteoblasts *in vitro*: *Mycobacterium tuberculosis* in MG-63³⁸, SaOS-2 cells⁸¹ and human primary osteoblasts⁸², and M. bovis in MC3T3-E1 cells (up to 7 days)⁸³. Arguably most directly supportive of the affirmative to this question is the demonstration of the obligate intracellular pathogen Chlamydia pneumoniae infection and persistence in the human osteoblastic hFOB 1.19 cell line⁸⁴ and in SaOS-2 cells⁸⁵. Finally, intra-osteoblastic (SaOS-2, MG-63⁸⁶; MC3T3-E1^{87; 88}; mouse primary osteoblast⁸⁷) and intra-osteocyte (MLO-Y4⁸⁹; 90) infection was demonstrated with the causative pathogen of osteoarticular brucellosis, *Brucella abortus*, as well as other species *B. suis*, *B. melitensis* and *B. canis* ⁸⁶.

<u>Conclusion:</u> The ability of pathogens to invade and reside in host cells is widespread and this also occurs in the context of bone infection. There is overwhelming evidence that pathogens including *S. aureus*, coagulase-negative staphylococci, *Brucella* species, *Chlamydia*, and a number of other pathogenic species are capable of infecting osteoblast lineage cells.

References:

- 1. Bonewald LF. 2011. The amazing osteocyte. J Bone Miner Res 26:229-238.
- 2. Zelmer AR, Nelson R, Richter K, Atkins GJ. 2022. Can intracellular Staphylococcus aureus in osteomyelitis be treated using current antibiotics? A systematic review and narrative synthesis. Bone Research 10:53.
- 3. Dominiak BJ, Oxberry W, Chen PC. 2003. Identification of Prevotella in pedal osteomyelitis of a diabetic patient. Ultrastruct Pathol 27:271-283.
- 4. Bosse MJ, Gruber HE, Ramp WK. 2005. Internalization of bacteria by osteoblasts in a patient with recurrent, long-term osteomyelitis. A case report. J Bone Joint Surg Am 87:1343-1347.
- 5. Walter N, Mendelsohn D, Brochhausen C, et al. 2021. Intracellular S. aureus in Osteoblasts in a Clinical Sample from a Patient with Chronic Osteomyelitis-A Case Report. Pathogens 10.
- 6. Ahmad-Mansour N, Plumet L, Pouget C, et al. 2023. The ROSA-Like Prophage Colonizing Staphylococcus aureus Promotes Intracellular Survival, Biofilm Formation, and Virulence in a Chronic Wound Environment. J Infect Dis 228:1800-1804.
- 7. Qin HJ, He SY, Shen K, et al. 2024. Melatonin, a potentially effective drug for the treatment of infected bone nonunion. J Pineal Res 76:e12914.
- 8. Trouillet-Assant S, Lelièvre L, Martins-Simões P, et al. 2016. Adaptive processes of Staphylococcus aureus isolates during the progression from acute to chronic bone and joint infections in patients. Cell Microbiol 18:1405-1414.
- 9. Li X, Pang Y, Guan L, et al. 2024. Mussel-inspired antimicrobial hydrogel with cellulose nanocrystals/tannic acid modified silver nanoparticles for enhanced calvarial bone regeneration. International Journal of Biological Macromolecules 270:132419.
- 10. Uskoković V, Desai TA. 2014. Simultaneous bactericidal and osteogenic effect of nanoparticulate calcium phosphate powders loaded with clindamycin on osteoblasts infected with Staphylococcus aureus. Mater Sci Eng C Mater Biol Appl 37:210-222.
- 11. Perez K, Patel R. 2018. Survival of Staphylococcus epidermidis in Fibroblasts and Osteoblasts. Infect Immun 86.
- 12. Garcia-Moreno M, Jordan PM, Gunther K, et al. 2022. Osteocytes Serve as a Reservoir for Intracellular Persisting Staphylococcus aureus Due to the Lack of Defense Mechanisms. Frontiers in Microbiology 13:937466.
- 13. Ishida I, Kohda C, Yanagawa Y, et al. 2007. Epigallocatechin gallate suppresses expression of receptor activator of NF-kappaB ligand (RANKL) in Staphylococcus aureus infection in osteoblast-like NRG cells. J Med Microbiol 56:1042-1046.
- 14. Mouton W, Josse J, Jacqueline C, et al. 2021. Staphylococcus aureus internalization impairs osteoblastic activity and early differentiation process. Sci Rep 11:17685.
- 15. Hamza T, Li B. 2014. Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection. BMC Microbiology 14:207.
- 16. Hamza T, Dietz M, Pham D, et al. 2013. Intra-cellular Staphylococcus aureus alone causes infection in vivo. Eur Cell Mater 25:341-350; discussion 350.
- 17. Johnson MB, Furr KH, Suptela SR, et al. 2022. Induction of protective interferon-beta responses in murine osteoblasts following Staphylococcus aureus infection. Frontiers in Microbiology 13:1066237.
- 18. Pillai RR, Somayaji SN, Rabinovich M, et al. 2008. Nafcillin-loaded PLGA nanoparticles for treatment of osteomyelitis. Biomed Mater 3:034114.
- 19. Bost KL, Bento JL, Ellington JK, et al. 2000. Induction of colony-stimulating factor expression following Staphylococcus or Salmonella interaction with mouse or human osteoblasts. Infect Immun 68:5075-5083.
- 20. Chauhan VS, Marriott I. 2010. Differential roles for NOD2 in osteoblast inflammatory immune responses to bacterial pathogens of bone tissue. J Med Microbiol 59:755-762.

- 21. Meléndez-Carmona M, Muñoz-Gallego I, Viedma E, et al. 2019. Intraosteoblastic activity of levofloxacin and rifampin alone and in combination against clinical isolates of meticillin-susceptible Staphylococcus aureus causing prosthetic joint infection. Int J Antimicrob Agents 54:356-360.
- 22. Dyon-Tafani V, Josse J, Dieppois G, et al. 2021. Antimicrobial activity of the new Fabl inhibitor afabicin desphosphono against intraosteoblastic Staphylococcus aureus. Int J Antimicrob Agents 57:106321.
- 23. Kolenda C, Josse J, Medina M, et al. 2020. Evaluation of the Activity of a Combination of Three Bacteriophages Alone or in Association with Antibiotics on Staphylococcus aureus Embedded in Biofilm or Internalized in Osteoblasts. Antimicrob Agents Chemother 64.
- 24. Abad L, Chauvelot P, Audoux E, et al. 2022. Lysosomal alkalization to potentiate eradication of intra-osteoblastic Staphylococcus aureus in the bone and joint infection setting. Clin Microbiol Infect 28:135.e131-135.e137.
- 25. Rasigade JP, Dunyach-Rémy C, Sapin A, et al. 2016. A Prophage in Diabetic Foot Ulcer-Colonizing Staphylococcus aureus Impairs Invasiveness by Limiting Intracellular Growth. J Infect Dis 214:1605-1608.
- 26. Valour F, Rasigade JP, Trouillet-Assant S, et al. 2015. Delta-toxin production deficiency in Staphylococcus aureus: a diagnostic marker of bone and joint infection chronicity linked with osteoblast invasion and biofilm formation. Clin Microbiol Infect 21:568.e561-511.
- 27. Rasigade JP, Trouillet-Assant S, Ferry T, et al. 2013. PSMs of hypervirulent Staphylococcus aureus act as intracellular toxins that kill infected osteoblasts. PLoS One 8:e63176.
- 28. Munoz-Gallego I, Melendez-Carmona MA, Lora-Tamayo J, et al. 2022. Microbiological and Molecular Features Associated with Persistent and Relapsing Staphylococcus aureus Prosthetic Joint Infection. Antibiotics 11:1119.
- 29. Woischnig AK, Gonçalves LM, Ferreira M, et al. 2018. Acrylic microparticles increase daptomycin intracellular and in vivo anti-biofilm activity against Staphylococcus aureus. Int J Pharm 550:372-379.
- 30. Musso N, Caruso G, Bongiorno D, et al. 2021. Different Modulatory Effects of Four Methicillin-Resistant Staphylococcus aureus Clones on MG-63 Osteoblast-Like Cells. Biomolecules 11.
- 31. Bongiorno D, Musso N, Caruso G, et al. 2021. Staphylococcus aureus ST228 and ST239 as models for expression studies of diverse markers during osteoblast infection and persistence. Microbiologyopen 10:e1178.
- 32. Bongiorno D, Musso N, Lazzaro LM, et al. 2020. Detection of methicillin-resistant Staphylococcus aureus persistence in osteoblasts using imaging flow cytometry. Microbiologyopen 9:e1017.
- 33. Abad L, Tafani V, Tasse J, et al. 2019. Evaluation of the ability of linezolid and tedizolid to eradicate intraosteoblastic and biofilm-embedded Staphylococcus aureus in the bone and joint infection setting. J Antimicrob Chemother 74:625-632.
- 34. Valour F, Trouillet-Assant S, Riffard N, et al. 2015. Antimicrobial activity against intraosteoblastic Staphylococcus aureus. Antimicrob Agents Chemother 59:2029-2036.
- 35. Dupieux C, Trouillet-Assant S, Camus C, et al. 2017. Intraosteoblastic activity of daptomycin in combination with oxacillin and ceftaroline against MSSA and MRSA. J Antimicrob Chemother 72:3353-3356.
- 36. Jauregui CE, Mansell JP, Jepson MA, Jenkinson HF. 2013. Differential interactions of Streptococcus gordonii and Staphylococcus aureus with cultured osteoblasts. Mol Oral Microbiol 28:250-266.
- 37. Maali Y, Martins-Simões P, Valour F, et al. 2016. Pathophysiological Mechanisms of Staphylococcus Non-aureus Bone and Joint Infection: Interspecies Homogeneity and Specific Behavior of S. pseudintermedius. Front Microbiol 7:1063.

- 38. Wright KM, Friedland JS. 2002. Differential regulation of chemokine secretion in tuberculous and staphylococcal osteomyelitis. J Bone Miner Res 17:1680-1690.
- 39. Ferreira M, Rzhepishevska O, Grenho L, et al. 2017. Levofloxacin-loaded bone cement delivery system: Highly effective against intracellular bacteria and Staphylococcus aureus biofilms. Int J Pharm 532:241-248.
- 40. Chauvelot P, Dupieux-Chabert C, Abad L, et al. 2021. Evaluation of intraosteoblastic activity of dalbavancin against Staphylococcus aureus in an ex vivo model of bone cell infection. J Antimicrob Chemother 76:2863-2866.
- 41. Nicolas A, Deplanche M, Commere PH, et al. 2022. Transcriptome Architecture of Osteoblastic Cells Infected With Staphylococcus aureus Reveals Strong Inflammatory Responses and Signatures of Metabolic and Epigenetic Dysregulation. Front Cell Infect Microbiol 12:854242.
- 42. Abad L, Josse J, Tasse J, et al. 2020. Antibiofilm and intraosteoblastic activities of rifamycins against Staphylococcus aureus: promising in vitro profile of rifabutin. J Antimicrob Chemother 75:1466-1473.
- 43. Diot A, Dyon-Tafani V, Bergot M, et al. 2020. Investigation of a Staphylococcus argenteus Strain Involved in a Chronic Prosthetic-Joint Infection. Int J Mol Sci 21.
- 44. Alagboso FI, Mannala GK, Walter N, et al. 2022. Rifampicin restores extracellular organic matrix formation and mineralization of osteoblasts after intracellular Staphylococcus aureus infection. Bone Joint Res 11:327-341.
- 45. Mannala GK, Rupp M, Walter N, et al. 2022. Microbiological and ultrastructural evaluation of bacteriophage 191219 against planktonic, intracellular and biofilm infection with Staphylococcus aureus. Eur Cell Mater 43:66-78.
- 46. Mohamed W, Domann E, Chakraborty T, et al. 2016. TLR9 mediates S. aureus killing inside osteoblasts via induction of oxidative stress. BMC Microbiol 16:230.
- 47. Mohamed W, Sommer U, Sethi S, et al. 2014. Intracellular proliferation of S. aureus in osteoblasts and effects of rifampicin and gentamicin on S. aureus intracellular proliferation and survival. Eur Cell Mater 28:258-268.
- 48. Gunn NJ, Zelmer AR, Kidd SP, et al. 2021. A Human Osteocyte Cell Line Model for Studying Staphylococcus aureus Persistence in Osteomyelitis. Front Cell Infect Microbiol 11:781022.
- 49. Shi SF, Zhang XL, Zhu C, et al. 2013. Ultrasonically enhanced rifampin activity against internalized staphylococcus aureus. Experimental and Therapeutic Medicine 5:257

EP - 262.

- 50. Shi S, Lu W, Gu X, Lin Q. 2024. Efficacy of Gentamicin-Loaded Chitosan Nanoparticles Against Staphylococcus aureus Internalized in Osteoblasts. Microb Drug Resist 30:196-202.
- 51. Ellington JK, Harris M, Hudson MC, et al. 2006. Intracellular Staphylococcus aureus and antibiotic resistance: implications for treatment of staphylococcal osteomyelitis. J Orthop Res 24:87-93.
- 52. Josse J, Guillaume C, Bour C, et al. 2016. Impact of the Maturation of Human Primary Bone-Forming Cells on Their Behavior in Acute or Persistent Staphylococcus aureus Infection Models. Front Cell Infect Microbiol 6:64.
- 53. Tuchscherr L, Kreis CA, Hoerr V, et al. 2016. Staphylococcus aureus develops increased resistance to antibiotics by forming dynamic small colony variants during chronic osteomyelitis. J Antimicrob Chemother 71:438-448.
- 54. Kalinka J, Hachmeister M, Geraci J, et al. 2014. Staphylococcus aureus isolates from chronic osteomyelitis are characterized by high host cell invasion and intracellular adaptation, but still induce inflammation. Int J Med Microbiol 304:1038-1049.
- 55. Abdulrehman T, Qadri S, Skariah S, et al. 2020. Boron doped silver-copper alloy nanoparticle targeting intracellular S. aureus in bone cells. PLoS One 15:e0231276.

- 56. Rosslenbroich SB, Raschke MJ, Kreis C, et al. 2012. Daptomycin: local application in implant-associated infection and complicated osteomyelitis. ScientificWorldJournal 2012:578251.
- 57. Sanchez CJ, Jr., Shiels SM, Tennent DJ, et al. 2015. Rifamycin Derivatives Are Effective Against Staphylococcal Biofilms In Vitro and Elutable From PMMA. Clin Orthop Relat Res 473:2874-2884.
- 58. Dapunt U, Giese T, Stegmaier S, et al. 2016. The osteoblast as an inflammatory cell: production of cytokines in response to bacteria and components of bacterial biofilms. BMC Musculoskelet Disord 17:243.
- 59. Kreis CA, Raschke MJ, Roßlenbroich SB, et al. 2013. Therapy of intracellular Staphylococcus aureus by tigecyclin. BMC Infect Dis 13:267.
- 60. Bormann N, Koliszak A, Kasper S, et al. 2017. A short artificial antimicrobial peptide shows potential to prevent or treat bone infections. Sci Rep 7:1506.
- 61. Strobel M, Pförtner H, Tuchscherr L, et al. 2016. Post-invasion events after infection with Staphylococcus aureus are strongly dependent on both the host cell type and the infecting S. aureus strain. Clin Microbiol Infect 22:799-809.
- 62. Tuchscherr L, Pöllath C, Siegmund A, et al. 2019. Clinical S. aureus Isolates Vary in Their Virulence to Promote Adaptation to the Host. Toxins (Basel) 11.
- 63. Tuchscherr L, Bischoff M, Lattar SM, et al. 2015. Sigma Factor SigB Is Crucial to Mediate Staphylococcus aureus Adaptation during Chronic Infections. PLoS Pathog 11:e1004870.
- 64. Tuchscherr L, Löffler B. 2016. Staphylococcus aureus dynamically adapts global regulators and virulence factor expression in the course from acute to chronic infection. Curr Genet 62:15-17.
- 65. Yang D, Wijenayaka AR, Solomon LB, et al. 2018. Novel Insights into Staphylococcus aureus Deep Bone Infections: the Involvement of Osteocytes. MBio 9.
- 66. Sun Q, Huynh K, Muratovic D, et al. 2024. Rapid bacterial evaluation beyond the colony forming unit in osteomyelitis. Elife 13.
- 67. Zelmer AR, Starczak Y, Solomon LB, et al. 2023. Saos-2 cells cultured under hypoxia rapidly differentiate to an osteocyte-like stage and support intracellular infection by Staphylococcus aureus. Physiological Reports 11:e15851.
- 68. Zelmer AR, Yang D, Gunn NJ, et al. 2024. Osteomyelitis-relevant antibiotics at clinical concentrations show limited effectivity against acute and chronic intracellular S. aureus infections in osteocytes. Antimicrob Agents Chemother 68:e0080824.
- 69. Gunn NJ, Kidd SP, Solomon LB, et al. 2024. Staphylococcus aureus persistence in osteocytes: weathering the storm of antibiotics and autophagy/xenophagy. Front Cell Infect Microbiol 14:1403289.
- 70. De Mesy Bentley KL, Tombetta R, Nishitani K, et al. 2016. Evidence of S. aureus deformation, proliferation and migration in canaliculi of cortical bone using a murine model of osteomyelitis. Journal of Orthopaedic Research 34.
- 71. de Mesy Bentley KL, MacDonald A, Schwarz EM, Oh I. 2018. Chronic Osteomyelitis with Staphylococcus aureus Deformation in Submicron Canaliculi of Osteocytes: A Case Report. JBJS Case Connect 8:e8.
- 72. Vanvelk N, de Mesy Bentley KL, Verhofstad MHJ, et al. 2024. Development of an ex vivo model to study Staphylococcus aureus invasion of the osteocyte lacuno-canalicular network. Journal of Orthopaedic Research.
- 73. Jensen LK, Birch JM, Jensen HE, et al. 2023. Bacterial invasion of the submicron osteocyte lacuna-canaliculi network (OLCN): a part of osteomyelitis disease biology. APMIS 131:325-332.
- 74. Fisher C, Patel R. 2021. Rifampin, Rifapentine, and Rifabutin Are Active against Intracellular Periprosthetic Joint Infection-Associated Staphylococcus epidermidis. Antimicrob Agents Chemother 65.

- 75. Aubin GG, Baud'huin M, Lavigne JP, et al. 2017. Interaction of Cutibacterium (formerly Propionibacterium) acnes with bone cells: a step toward understanding bone and joint infection development. Sci Rep 7:42918.
- 76. Zhao P, Liu J, Pan C, Pan Y. 2014. NLRP3 inflammasome is required for apoptosis of Aggregatibacter actinomycetemcomitans-infected human osteoblastic MG63 cells. Acta Histochem 116:1119-1124.
- 77. Zhang W, Ju J, Rigney T, Tribble GD. 2011. Fimbriae of Porphyromonas gingivalis are important for initial invasion of osteoblasts, but not for inhibition of their differentiation and mineralization. J Periodontol 82:909-916.
- 78. Zhang W, Swearingen EB, Ju J, et al. 2010. Porphyromonas gingivalis invades osteoblasts and inhibits bone formation. Microbes Infect 12:838-845.
- 79. Zhang W, Ju J, Rigney T, Tribble G. 2013. Integrin α5β1-fimbriae binding and actin rearrangement are essential for Porphyromonas gingivalis invasion of osteoblasts and subsequent activation of the JNK pathway. BMC Microbiol 13:5.
- 80. Zhang W, Ju J, Rigney T, Tribble G. 2014. Porphyromonas gingivalis infection increases osteoclastic bone resorption and osteoblastic bone formation in a periodontitis mouse model. BMC Oral Health 14:89.
- 81. Sarkar S, Dlamini MG, Bhattacharya D, et al. 2016. Strains of Mycobacterium tuberculosis differ in affinity for human osteoblasts and alveolar cells in vitro. Springerplus 5:163.
- 82. Ma W, Jin W, He X, et al. 2022. Mycobacterium tuberculosis Induced Osteoblast Dysregulation Involved in Bone Destruction in Spinal Tuberculosis. Front Cell Infect Microbiol 12:780272.
- 83. Hotokezaka H, Kitamura A, Matsumoto S, et al. 1998. Internalization of Mycobacterium bovis Bacillus Calmette-Guérin into osteoblast-like MC3T3-E1 cells and bone resorptive responses of the cells against the infection. Scand J Immunol 47:453-458.
- 84. Bailey L, Engström P, Nordström A, et al. 2008. Chlamydia pneumoniae infection results in generalized bone loss in mice. Microbes Infect 10:1175-1181.
- 85. Rizzo A, Misso G, Bevilacqua N, et al. 2014. Zoledronic acid affects the cytotoxic effects of Chlamydia pneumoniae and the modulation of cytokine production in human osteosarcoma cells. Int Immunopharmacol 22:66-72.
- 86. Delpino MV, Fossati CA, Baldi PC. 2009. Proinflammatory response of human osteoblastic cell lines and osteoblast-monocyte interaction upon infection with Brucella spp. Infect Immun 77:984-995.
- 87. Scian R, Barrionuevo P, Fossati CA, et al. 2012. Brucella abortus invasion of osteoblasts inhibits bone formation. Infect Immun 80:2333-2345.
- 88. Pesce Viglietti AI, Gentilini MV, Arriola Benitez PC, et al. 2018. B. Abortus Modulates Osteoblast Function Through the Induction of Autophagy. Front Cell Infect Microbiol 8:425.
- 89. Viglietti AIP, Benitez PCA, Gentilini MV, et al. 2016. Brucella abortus invasion of osteocytes modulates connexin 43 and integrin expression and induces osteoclastogenesis via receptor activator of NF-kappaB ligand and tumor necrosis factor alpha secretion. Infection and Immunity 84:11

EP - 20.

90. Pesce Viglietti AI, Giambartolomei GH, Delpino MV. 2019. Endocrine modulation of Brucella abortus-infected osteocytes function and osteoclastogenesis via modulation of RANKL/OPG. Microbes Infect 21:287-295.