Question B9: Can bacteria survive in the intracellular space of osteoblasts?
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RESPONSE/RECOMMENDATION: Yes, there is a substantial body of in vitro and in vivo
evidence that PJI pathogens are capable of infecting and residing in the intracellular space of
osteoblastic cells, although the duration of this intracellular infection is variable with studies
estimating persistence ranging from 24 hours to weeks. Much of the available current evidence is of
S. aureus, but a diverse array of other pathogens has also been identified as infecting osteoblasts.

LEVEL OF EVIDENCE: Strong
DELEGATE VOTE: Agree: [% vote], Disagree: [%], Abstain: [%]

RATIONALE: Osteoblast lineage cells, including osteoblast progenitors, bone lining cells, mature
osteoblasts, and osteocytes, constitute the vast majority of cells in hard bone tissue, with osteocytes
alone comprising 90-95% of these!. Intracellular infection of this lineage is an important potential
mechanism whereby pathogens may escape antimicrobial treatments, as recently summarized for the
most prevalent pathogen in human osteomyelitis, Staphylococcus aureus®. The long-lived nature of
osteocytes in particular, also lends a potentially long-term niche for bacteria that phenotypically adapt
to low-growth phenotypes, such as small colony variants (SCV). These bacteria may also escape
detection during diagnosis if the infected tissue is not suitably sampled and processed, and thus may
present as culture-negative infections. The ability of bacteria to survive in viable ‘deep bone’ cells
(potentially in otherwise ‘healthy’ bone) also informs the need for appropriate bony debridement
during surgical management or other treatment modality to address these bacteria, with the risk of
chronic infection if this is not achieved.

A comprehensive literature search was conducted of PubMed and Embase, initially identifying
1358 potentially relevant unique studies, screened by two independent reviewers, of which 200 were
selected for full-text review and 89 included for evaluation. We defined ‘persistence’ as a period of
at least 24 hours post-infection where there was evidence of both viable host cells containing viable
intracellular bacteria. We included peer-reviewed, original research studies of all osteoblast lineage
cells, as well as informative case reports and systematic reviews. Several cases of chronic
osteomyelitis detailed osteoblastic infection from bone biopsy: 1) in a 53 year old (y.o.) female with
the obligate anaerobe Prevotella melanginoganica visible in osteocytes®; 2) a case of Gram-positive
cocci in viable osteoblasts and osteocytes established by histochemistry and transmission electron
microscopy (TEM) in a 73 y.o. male*; 3) S. aureus was present in osteoblasts from a 14 y.o. boy".

The majority of in vitro studies demonstrated viable intracellular bacteria in host cells
following a short infection period of 45-180 min, followed by removal of extracellular bacteria, and
then assessment of colony forming unit (CFU) formation following plating of host cell lysates after
at least 24 hours. An indication of host cell viability following infection was also a requirement for
inclusion. Of the included studies, 68 (76%) examined intracellular S. aureus, well known to be a
facultative intracellular pathogen, with a multitude of both methicillin resistant (MRSA) and sensitive
(MSSA) strains, clinical isolates, and standard laboratory strains. Seven studies examined S. aureus
infection of the well-characterized mouse osteoblast cell line MC3T3-E1%'2, with intracellular
persistence shown for up to 28 days’. Other mouse cell line infection studies were performed in
osteoblast-like NRG!® and OBP1 cell lines'*. A single rat mature osteoblast cell line, UMR-106, was



utilized to demonstrate S. aureus intracellular persistence for up to 8 days'®, while rat primary
calvarial osteoblasts were used to show persistence for 21 days!®. Four studies examined S. aureus
infection of mouse primary (calvaria-derived) osteoblasts'’?°, with persistence demonstrated between
24-48 hours. The majority of human cell line studies were performed in MG-63 osteosarcoma cells,
an immature osteoblast model, which undergoes limited, if any, osteogenic differentiation. In total,
25 studies examined S. aureus infection of MG-63, most presenting evidence for a 24-48 hours post-
infection period % 2!'*** with several extending observations for 7-8 days*'**. Five further studies were
performed in the human mature osteoblast cell line, SaOS-2, which has strong osteogenic potential,
with persistence demonstrated between 24-72 hours***%. A single group used SV-40 transformed
human osteoblasts** > to study infection. Fifteen studies utilized human primary osteoblasts, derived
from trabecular bone explant cultures, as the host cell type to examine S. aureus intracellular
persistence. This was most commonly demonstrated between 24-48 hours*® 3" while some studies
extended observations to a week or more!’: 6% and up to 21 days in a study by Tuchscherr et al.%*.
This group also demonstrated the phenotypic switch of S. aureus to an SCV phenotype, linked to

chronic infections>>.

Osteocyte cell models have also been used to demonstrate S. aureus persistence. Yang et al.%

demonstrated S. aureus infection and persistence in human primary osteoblast-derived osteocytes,
associated with a phenotypic switch to SCVs over a 6 day infection period. More recently, SaOS-2
cells differentiated to an osteocyte-like phenotype have also been utilized, showing S. aureus
persistence for up to 21 days**: %%, Mouse MLO-Y4 osteocyte-like cells also supported S. aureus
infection !2. Viable osteocyte infection by S. aureus was also shown in a human ex vivo bone model
and in PJI patient bone specimens®. de Mesy Bentley and colleagues showed by TEM that S. aureus
invades the osteocyte lacunocanalicular network (OCLN), appearing to deform in order to enter
canaliculi in a mouse PJI model’ and in a human case study of diabetic foot infection’!. This process
was shown in an ex vivo mouse bone model’?, and OCLN immunostaining of S. aureus was reported
in several other, both paediatric and adult, cases of osteomyelitis’>. Although infection of living
osteoblasts/osteocytes in these latter studies was not reported, they are supportive of S. aureus
accessing these cell types.

In addition to S. aureus, staphylococcal species S. argenteus and coagulase-negative S.
pseudintermedius were shown to infect MG-63 cells for up to 7-10 days®”*, and S. epidermidis was
shown to infect human primary osteoblasts'!: > and MC3T3-E1 cells for up to 10 days'"’*. Another
common periprosthetic joint infection isolate, Cutibacterium acnes was also shown to persist in MG-
63 cells for up to 96 hours, becoming undetectable after this time point’>. Gram-negative species
Streptococcus gordonii (in MG-63)*, Salmonella Dublin'® and P. melanginoganica® have also been
shown to persist in osteoblastic cells. Pathogens associated with periodontitis have also been
demonstrated as tropic for osteoblasts, including Aggregatibacter actinomycetemcomitans (in MG-
63)’6, and Porphyromonas gingivalis, shown in mouse primary osteoblast models’’””’ and in situ in
osteoblasts and osteocytes of alveolar bone in a mouse model . Several Mycobacterium species have
been shown to persist in osteoblasts in vitro: Mycobacterium tuberculosis in MG-63*, Sa0S-2 cells®!
and human primary osteoblasts®?, and M. bovis in MC3T3-E1 cells (up to 7 days)3. Arguably most
directly supportive of the affirmative to this question is the demonstration of the obligate intracellular
pathogen Chlamydia pneumoniae infection and persistence in the human osteoblastic hFOB 1.19 cell
line®* and in SaOS-2 cells®. Finally, intra-osteoblastic (Sa0S-2, MG-63%; MC3T3-E1%": 3; mouse
primary osteoblast®”) and intra-osteocyte (MLO-Y4%% %) infection was demonstrated with the
causative pathogen of osteoarticular brucellosis, Brucella abortus, as well as other species B. suis, B.
melitensis and B. canis 3°.

Conclusion: The ability of pathogens to invade and reside in host cells is widespread and this
also occurs in the context of bone infection. There is overwhelming evidence that pathogens including
S. aureus, coagulase-negative staphylococci, Brucella species, Chlamydia, and a number of other
pathogenic species are capable of infecting osteoblast lineage cells.
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