G64: Which Surgical Dressing is Optimal for Reducing Surgical site infection After Major Orthopedic Surgery?

Sayed Shahid Noor, Muhammad Shoaib bin Shakeel, Andrea Baldini, Giueseppe Calafiore, Ruwais Binlaksar, Giandominco Logroscino, Vikash Kapoor, Antonio Solano, Joseph A. Karam,

Response/Recommendation: Active dressings, and particularly hydrofiber dressings, are superior to passive dressings in reducing surgical site infection after major orthopaedic surgery.

Level of Evidence: Limited

Delegate Vote:

Rationale:

Proper wound management after major orthopaedic surgery, including elective total joint replacement (TJA), is crucial to prevent superficial and deep surgical site infections (SSI).[1] This includes the use of the proper wound dressing post-operatively. There are numerous options available for wound coverage after surgical procedures. Dressings can be basic/passive (e.g. gauze or cotton absorbent) vs. advanced/active (e.g. hydrogels, hydrocolloids, films), occlusive vs. nonocclusive, hydrophilic vs. hydrophobic, include antimicrobial agents, or be composed of a 'glueas-a-dressing' (usually made of cyanoacrylate).[2] The ideal dressing is likely one that absorbs exudate while maintaining a moist environment, can provide a barrier from contamination from surrounding skin and external environment an ideally include an antimicrobial agent that is broadspectrum and does not lead to increased bacterial resistance.[3,4] Effective antimicrobial agents used in wound dressings include silver, polyhexamethylene biguanide (PHMB) and manuka honey. These agents have broad antimicrobial properties and have been shown to work against fungus and bacteria, even resistant organisms such as methicillin-resistant Staphylococcus aureus MRSA and vancomycin-resistant Enterococcus (VRE). [5-10] Dressings used in orthopaedic surgery should additionally be highly conforming and flexible to accommodate for movement especially at joints, like the knee, and should be cost-effective.

In a quest for the best post-operative dressing, Dumville et al. conducted a Cochrane database study encompassing 29 randomized controlled trials (RCTs), mostly involving non-orthopaedic procedures. [11] This extensive review found no clear superiority of one specific type of dressing in reducing SSI and concluded that available studies in the literature are of very low quality. In a systematic review and network meta-analysis more focused on TJA, Kuo et al. evaluated 21 studies utilizing 12 different types of dressing after 7,293 TJA procedures. [12] They found antimicrobial dressings to have the most efficacy for preventing PJI. Negative pressure wound therapy dressings had the highest rate of blister formation. Hydrofiber dressings were not found to offer a significantly reduced rate of infection compared to standard dressings. Yuan et al. conducted a meta-analysis comparing active dressings vs. passive dressings after hip or knee arthroplasty. [13] They included 16 prospective and retrospective studies involving 2,765 subjects. They found active dressings to have significantly lower wound complications and number of dressing changes.

Indeed, many orthopaedic centers have recently transitioned from basic dressings to advanced or active dressings after TJA. Hydrofiber dressings have particularly gained interest and have become the standard of care in many centers. These dressings are made of sodium carboxymethylcellulose (CMC), which forms a gel on contact with exudate and can hold up to 30 times its weight [2]. In order to better understand the role of hydrofiber dressings in reducing infection after major orthopaedic surgery, we conducted a comprehensive review of the literature. Using the MeSH terms created by the librarians we searched the Scopus and Medline databases to identify 4,718 potentially eligible studies. After initial screening by two independent reviewers, 15 studies were left for full review and data extraction, including 4 meta-analyses. [14-28]. We found two retrospective studies that identified a lower rate of PJI with the use of hydrofiber after TJA. Cai et al. demonstrated a significantly reduced rate of PJI with the use of hydrofiber dressings in a retrospective study of 1,778 patients undergoing TJA, with an odds ratio of 0.165 (95% confidence interval: 0.051-0.533) after multivariate analysis. [16] Similar findings were identified by Grosso et al. in another retrospective study of 1,173 patients undergoing TJA. [19] They also performed a multivariate analysis for risk of PJI and found that the use of hydrofiber dressing conferred a protective effect with an independent odds ratio of 0.092 (95% confidence interval 0.017-0.490). While several prospective studies have attempted to further evaluate the effect of hydrofiber dressings on outcomes after TJA, they were grossly unable to identify a significant difference in infection rates, mostly related to low numbers of study subjects coupled with the low incidence of infection. [14,15,18,20,22,24-26,28,29] Systematic reviews and meta-analyses thus attempted to compile the data and address this question. Chen et al. conducted a meta-analysis comparing hydrofiber dressing to standard dressing or absorbent dressings after TJA. [17] They included 5 studies with a total of 3,721 participants. They found lower infection rates with hydrofiber and absorbent dressings and lower blistering rates in hydrofiber dressings compared to the other 2 dressings. Sharma et al. in a broader meta-analysis including 12 RCTs found decreased wound complications after film dressings or hydrofiber dressings compared to passive dressings, without however demonstrating a significant effect on the rate of actual periprosthetic joint infection (PJI). [27] Finally, a recent meta-analysis by Mundi et al. included 5 RCTs comparing hydrofiber dressings to standard dressings. [23] They were not able to show any effect on PJI, however the studies had smaller number of patients, limited follow-up and overall poor methodology. All 3 of these meta-analyses showed a significantly reduced number of dressing changes with the hydrofiber dressing. This not a trivial benefit, as it minimizes skin trauma, avoids painful events, reduces the risk of wound contamination. Despite these advantages, the higher cost of hydrofiber dressings may pose challenges for widespread adoption, particularly in resource-limited settings. Nonetheless, potential savings from reduced hospital stays and fewer secondary interventions may offset initial expenses, particularly for high-risk patients. [2,15,26]

Conclusion:

In conclusion, advanced active dressings, particularly hydrofiber wound dressings, should be considered a preferred option for postoperative wound care in orthopedic surgeries. Their role in reducing infection, improving patient comfort, and enhancing healing makes them a valuable addition to surgical practice. While further high-quality studies are recommended to explore their

true efficacy in preventing deep infections, these advanced dressings align with evidence-based practices aimed at optimizing surgical outcomes and improving patient care standards.

References:

- [1] Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res 2008;466:1710–5. https://doi.org/10.1007/s11999-008-0209-4.
- [2] Chowdhry M, Chen AF. Wound dressings for primary and revision total joint arthroplasty. Ann Transl Med 2015;3:268. https://doi.org/10.3978/j.issn.2305-5839.2015.09.25.
- [3] Tustanowski J. Effect of dressing choice on outcomes after hip and knee arthroplasty: a literature review. J Wound Care 2009;18:449–50, 452, 454, passim. https://doi.org/10.12968/jowc.2009.18.11.44985.
- [4] Collins A. Does the postoperative dressing regime affect wound healing after hip or knee arthroplasty? J Wound Care 2011;20:11–6. https://doi.org/10.12968/jowc.2011.20.1.11.
- [5] George NM, Cutting KF. Antibacterial Honey (MedihoneyTM): in-vitro Activity Against Clinical Isolates of MRSA, VRE, and Other Multiresistant Gram-negative Organisms Including Pseudomonas aeruginosa. Wounds 2007;19:231–6.
- [6] Eberlein T, Haemmerle G, Signer M, Gruber Moesenbacher U, Traber J, Mittlboeck M, et al. Comparison of PHMB-containing dressing and silver dressings in patients with critically colonised or locally infected wounds. J Wound Care 2012;21:12, 14–6, 18–20. https://doi.org/10.12968/jowc.2012.21.1.12.
- [7] Warriner R, Burrell R. Infection and the chronic wound: a focus on silver. Adv Skin Wound Care 2005;18 Suppl 1:2–12. https://doi.org/10.1097/00129334-200510001-00001.
- [8] Jiang Y, Zhang Q, Wang H, Välimäki M, Zhou Q, Dai W, et al. Effectiveness of silver and iodine dressings on wound healing: a systematic review and meta-analysis. BMJ Open 2024;14:e077902. https://doi.org/10.1136/bmjopen-2023-077902.
- [9] Jull AB, Cullum N, Dumville JC, Westby MJ, Deshpande S, Walker N. Honey as a topical treatment for wounds. Cochrane Database Syst Rev 2015;2015:CD005083. https://doi.org/10.1002/14651858.CD005083.pub4.
- [10] Storm-Versloot MN, Vos CG, Ubbink DT, Vermeulen H. Topical silver for preventing wound infection. Cochrane Database Syst Rev 2010:CD006478. https://doi.org/10.1002/14651858.CD006478.pub2.
- [11] Dumville JC, Gray TA, Walter CJ, Sharp CA, Page T, Macefield R, et al. Dressings for the prevention of surgical site infection. Cochrane Database Syst Rev 2016;12:CD003091. https://doi.org/10.1002/14651858.CD003091.pub4.
- [12] Kuo F-C, Hsu C-W, Tan TL, Lin P-Y, Tu Y-K, Chen P-C. Effectiveness of Different Wound Dressings in the Reduction of Blisters and Periprosthetic Joint Infection After Total Joint Arthroplasty: A Systematic Review and Network Meta-Analysis. J Arthroplasty 2021;36:2612–29. https://doi.org/10.1016/j.arth.2021.02.047.
- [13] Yuan Y, Li J, Wang K, Zheng G, Chai S. The effect of different wound dressing materials used in postoperative treatment of wounds after total hip arthroplasty and total knee

- arthroplasty: A meta-analysis. Int Wound J 2022;19:2107–14. https://doi.org/10.1111/iwj.13816.
- [14] Beele H, Van Overschelde P, Olivecrona C, Smet S. A prospective randomized controlled clinical investigation comparing two post-operative wound dressings used after elective hip and knee replacement; Mepilex® Border Post-Op versus Aquacel® surgical. Int J Orthop Trauma Nurs 2020;38:100772. https://doi.org/10.1016/j.ijotn.2020.100772.
- [15] Burke NG, Green C, McHugh G, McGolderick N, Kilcoyne C, Kenny P. A prospective randomised study comparing the jubilee dressing method to a standard adhesive dressing for total hip and knee replacements. J Tissue Viability 2012;21:84–7. https://doi.org/10.1016/j.jtv.2012.04.002.
- [16] Cai J, Karam JA, Parvizi J, Smith EB, Sharkey PF. Aquacel surgical dressing reduces the rate of acute PJI following total joint arthroplasty: a case-control study. J Arthroplasty 2014;29:1098–100. https://doi.org/10.1016/j.arth.2013.11.012.
- [17] Chen KK, Elbuluk AM, Vigdorchik JM, Long WJ, Schwarzkopf R. The effect of wound dressings on infection following total joint arthroplasty. Arthroplast Today 2018;4:125–9. https://doi.org/10.1016/j.artd.2017.03.002.
- [18] Dobbelaere A, Schuermans N, Smet S, Van Der Straeten C, Victor J. Comparative study of innovative postoperative wound dressings after total knee arthroplasty. Acta Orthop Belg 2015;81:454–61.
- [19] Grosso MJ, Berg A, LaRussa S, Murtaugh T, Trofa DP, Geller JA. Silver-Impregnated Occlusive Dressing Reduces Rates of Acute Periprosthetic Joint Infection After Total Joint Arthroplasty. J Arthroplasty 2017;32:929–32. https://doi.org/10.1016/j.arth.2016.08.039.
- [20] Kuo FC, Chen B, Lee MS, Yen SH, Wang JW. AQUACEL® Ag Surgical Dressing Reduces Surgical Site Infection and Improves Patient Satisfaction in Minimally Invasive Total Knee Arthroplasty: A Prospective, Randomized, Controlled Study. Biomed Res Int 2017;2017:1262108. https://doi.org/10.1155/2017/1262108.
- [21] Langlois J, Zaoui A, Ozil C, Courpied J-P, Anract P, Hamadouche M. Randomized controlled trial of conventional versus modern surgical dressings following primary total hip and knee replacement. Int Orthop 2015;39:1315–9. https://doi.org/10.1007/s00264-015-2726-6.
- [22] López-Parra M, Gil-Rey D, López-González E, González-Rodríguez EM, Simó-Sánchez I, Zamora-Carmona F, et al. Open-label randomized controlled trial to compare wound dressings for patients undergoing hip and knee arthroplasty: study protocol for a randomized controlled trial. Trials 2018;19:357. https://doi.org/10.1186/s13063-018-2755-8.
- [23] Mundi R, Chaudhry H, Ekhtiari S, Ajrawat P, Tushinski DM, Wood TJ, et al. Efficacy of hydrofibre dressing following total joint arthroplasty: a meta-analysis of randomised controlled trials. Hip Int 2023;33:34–40. https://doi.org/10.1177/11207000211012669.
- [24] Pickles S, McAllister E, McCullagh G, Nieroba TJ. Quality improvement evaluation of postoperative wound dressings in orthopaedic patients. Int J Orthop Trauma Nurs 2022;45:100922. https://doi.org/10.1016/j.ijotn.2022.100922.
- [25] Ravenscroft MJ, Harker J, Buch KA. A prospective, randomised, controlled trial comparing wound dressings used in hip and knee surgery: Aquacel and Tegaderm versus Cutiplast. Ann R Coll Surg Engl 2006;88:18–22. https://doi.org/10.1308/003588406X82989.
- [26] Ravnskog FA, Espehaug B, Indrekvam K. Randomised clinical trial comparing Hydrofiber and alginate dressings post-hip replacement. J Wound Care 2011;20:136–42. https://doi.org/10.12968/jowc.2011.20.3.136.

- [27] Sharma G, Lee SW, Atanacio O, Parvizi J, Kim TK. In search of the optimal wound dressing material following total hip and knee arthroplasty: a systematic review and meta-analysis. Int Orthop 2017;41:1295–305. https://doi.org/10.1007/s00264-017-3484-4.
- [28] Abuzakuk TM, Coward P, Shenava Y, Kumar VS, Skinner JA. The management of wounds following primary lower limb arthroplasty: a prospective, randomised study comparing hydrofibre and central pad dressings. Int Wound J 2006;3:133–7. https://doi.org/10.1111/j.1742-4801.2006.00189.x.
- [29] Zarghooni K, Bredow J, Siewe J, Deutloff N, Meyer HS, Lohmann C. Is the use of modern versus conventional wound dressings warranted after primary knee and hip arthroplasty? Results of a Prospective Comparative Study. Acta Orthop Belg 2015;81:768–75.