<u>HK73</u>: Is there a difference in the success rate of two-stage exchange arthroplasty when static spacers versus articulating spacers are utilized?

Yazdi Hamidreza, Haghbin Mohammadamin, Sharma Rajeev K, Cacciola Giorgio, Moojen Dirk Jan F, Sambri Andrea, Mađjarević Tomislav, Ghadi Ismail, Chen Yunsu

Response/Recommendation: Yes. Although in hip and knee two-stage exchange arthroplasty, both articulating and static spacers yield similar results in infection eradication, articulating spacers offer better functional and clinical outcomes without significantly increasing the treatment costs.

Level of evidence: Moderate

Delegate votes:

Rationale:

The periprosthetic joint infection (PJI) is a serious complication in arthroplasty (1-4) and occurs in approximately 1-3% of primary THA and TKA (2, 4-7). Two-stage revision arthroplasty (TRA) remains the preferred method for treating chronic PJI in North America (8-15), which involves prosthesis removal, antibiotic-loaded spacer placement, and then reimplantation (1, 4, 8-10).

Spacers used in two-stage exchange arthroplasty of knee and hip are typically classified into two types: static spacers that immobilize the joint and articulating spacers that allow for some range of motion (1, 3, 10-13). Some authors suggest that a static spacer facilitates infection control through immobilization (11, 14-20) and is more cost-effective than articulating spacers (3, 21-23), but may lead to adverse effects such as joint stiffness, with poor range of motion (ROM) after reimplantation (14, 18, 24, 25). Articulating spacers were introduced to address the latter issues associated with static spacers (3, 20, 26-28).

The goal of this systematic review was to assess the clinical success rates and outcomes of two-stage exchange arthroplasty for PJI of knee and hip when articulating versus static spacers were used..

A comprehensive literature search was conducted in MEDLINE, EMBASE and the Cochrane Databases to identify relevant studies using the carefully developed MESH terms in collaboration with librarians. After initial identification of the relevant studies, and screening by multiple delegates, 79 studies met the final inclusion criteria.

Infection eradication: Most studies, including meta-analyses and RCTs, show that in two-stage exchange arthroplasty of the hip and knee, antibiotic-loaded static and articulating spacers achieve similar infection eradication rates (4, 9-12, 14-17, 19, 21, 24, 25, 27, 29-61), although articulating spacers seem to provide better results in some reports (8, 13, 18,

38, 62-65). The proponents of static spacers claim that limiting soft tissue mobilization provides better antibiotic delivery (13, 16, 17, 21, 28, 37, 38, 66), which is an important principle in treatment infections(62, 64, 67), but many studies have shown that both the static and the articulating spacers have similar potential in infection eradication with the resistant germs (8, 10, 11, 14, 17, 19, 44, 47, 68, 69).

Functional Outcomes and Mobility: Articulating spacers provide significantly greater range of motion (ROM) post-reimplantation and preserve mobility during interim periods in knee tow-stages arthroplasty (4, 8, 11, 12, 14-17, 19, 23-25, 28-38, 40-42, 44, 45, 47, 49, 54-56, 59, 63, 65, 67, 70, 71).

There is no true static spacer that fully prevents hip movement (22, 23, 32, 72-75), and few studies have directly compared the use of static and articulating spacers in treating PJI following THA (9, 23, 32, 71, 74, 76). However, studies indicate that the use of articulating spacer in the hip provides a better ROM and significantly enhances patient mobility post-reimplantation (9, 12, 19, 22, 23, 30, 31, 34, 60, 65, 67, 69, 74, 77-79).

Most studies have shown superior functional outcomes (12-15, 18, 19, 21, 23, 28, 31, 33, 34, 40, 42, 47, 49, 51, 59, 60, 62-65, 67, 71, 80), improved quality of life (3, 19, 31, 38, 41, 42, 44, 47, 53, 63, 81, 82), and enhanced the level of activities (25-28, 62, 65, 82, 83), using AS in hip and knee two- stages arthroplasty, which may directly result from better ROM (9, 11, 15, 25, 37).

Although some authors suggest similar functional outcomes between articulating and static spacers (9, 13, 25, 27, 28, 32, 41, 55, 62, 82, 83), it is essential to note that confounding factors such as health conditions, pain levels, follow-up duration and nature of the measurement tools, may have influenced the functional outcome (84).

Complications: The literature highlights heterogeneous definitions of complication with varying outcomes. Soft tissue contractures, joint dysfunction, and especially bone loss is among the most critical and common complications (9, 30, 39), often resulting in poor outcomes. Using a static spacer for treatment of PJI in the hip and the knee frequently causes significant bone loss, joint stiffness, and soft tissue shortening (3, 8, 9, 11-15, 17, 19, 21, 24, 25, 28-32, 34-38, 42, 44, 46, 51, 55, 58-61, 65, 69, 77, 78, 85, 86), muscle weakness (3, 13, 16, 21, 22, 26, 35, 36, 39, 41, 45, 59, 62, 71, 78, 87-89) and leg-length discrepancy in revision THA (12, 19, 31, 58, 65, 78, 80, 90, 91).

Dislocation and fracture of the spacers are other common complications. It is reported more commonly with articulating spacers (8, 12, 14, 20, 22, 23, 27, 29, 31-37, 49, 54, 55, 58, 73, 78, 92), due to higher mobility, but the difference in incidence appears to be insignificant (9, 15, 25, 36, 39, 51, 61, 69). Spacer dislocation occurs mainly in 2-stage hip revision arthroplasty (27, 69, 73) and increases significantly when using an articulating spacer without acetabular augmentation (22, 31, 32, 37, 60, 73, 74, 83, 87, 89, 93-100).

The patient conditions, surgeon skills, bone and soft tissue deficiencies, construction technique, time interval until reimplantation, bias in selecting patients, and other factors may have a more significant impact on causing mechanical complications than spacer type (8, 12, 13, 20, 25, 29-31, 33, 34, 36, 42, 49, 51, 59, 60, 63, 65, 69, 73, 78, 82, 83, 86, 87, 89, 90, 92, 94, 97, 101-103).

Costs: The cost of spacers is a minor part of the total cost of managing PJI, which is more related to hospitalization and antibiotic treatment (104-106). Articulating spacers are more expensive due to their complex design and materials used (3, 9, 11, 13, 14, 21, 35, 37, 56, 103), but through reducing the hospital length of stay (4, 9, 11, 13, 14, 23, 28, 32, 44, 65, 78, 80, 91) minimizing need for extensive surgery (8, 11, 13, 14, 17, 18, 21, 28, 30, 32, 34-39, 41, 44, 45, 52, 53, 59) faster recovery of function (4, 9, 11, 14, 19, 27, 35, 42, 47, 49, 56, 61, 65, 91, 107) and less complications (13, 32, 37, 42, 61), articulating spacers may reduce the overall cost of PJI management (9-11, 13, 31, 39, 44, 51, 52, 55, 56, 80, 88, 90).

Conclusion:

Articulating spacers provide comparable results to static spacers in infection eradication, while offering superior mobility, quality of life, fewer complications, and lower overall treatment costs, making them a preferred option for PJI management.

References

- 1. Gomez MM, Tan TL, Manrique J, Deirmengian GK, Parvizi J. The Fate of Spacers in the Treatment of Periprosthetic Joint Infection. J Bone Joint Surg Am. 2015;97(18):1495-502.
- 2. Kildow BJ, Della-Valle CJ, Springer BD. Single vs 2-Stage Revision for the Treatment of Periprosthetic Joint Infection. J Arthroplasty. 2020;35(3s):S24-s30.
- 3. Mazzucchelli L, Rosso F, Marmotti A, Bonasia DE, Bruzzone M, Rossi R. The use of spacers (static and mobile) in infection knee arthroplasty. Curr Rev Musculoskelet Med. 2015;8(4):373-82.
- 4. Parvizi J, Adeli B, Zmistowski B, Restrepo C, Greenwald AS. Management of periprosthetic joint infection: the current knowledge: AAOS exhibit selection. J Bone Joint Surg Am. 2012;94(14):e104.
- 5. Clohisy JC, Calvert G, Tull F, McDonald D, Maloney WJ. Reasons for revision hip surgery: a retrospective review. Clin Orthop Relat Res. 2004(429):188-92.
- 6. Dale H, Hallan G, Hallan G, Espehaug B, Havelin LI, Engesaeter LB. Increasing risk of revision due to deep infection after hip arthroplasty. Acta Orthop. 2009;80(6):639-45.
- 7. Kurtz SM, Ong KL, Lau E, Bozic KJ, Berry D, Parvizi J. Prosthetic joint infection risk after TKA in the Medicare population. Clin Orthop Relat Res. 2010;468(1):52-6.

- 8. Guild GN, 3rd, Wu B, Scuderi GR. Articulating vs. Static antibiotic impregnated spacers in revision total knee arthroplasty for sepsis. A systematic review. J Arthroplasty. 2014;29(3):558-63.
- 9. Nahhas CR, Chalmers PN, Parvizi J, Sporer SM, Deirmengian GK, Chen AF, et al. Randomized Trial of Static and Articulating Spacers for Treatment of the Infected Total Hip Arthroplasty. J Arthroplasty. 2021;36(6):2171-7.
- 10. Yu Q, Luo M, Wu S, Lai A, Sun Y, Hu Q, et al. Comparison of infection eradication rate of using articulating spacers containing bio-inert materials versus all-cement articulating spacers in revision of infected TKA: a systematic review and meta-analysis. Arch Orthop Trauma Surg. 2019;139(5):695-707.
- 11. Nahhas CR, Chalmers PN, Parvizi J, Sporer SM, Berend KR, Moric M, et al. A Randomized Trial of Static and Articulating Spacers for the Treatment of Infection Following Total Knee Arthroplasty. J Bone Joint Surg Am. 2020;102(9):778-87.
- 12. Sporer SM. Spacer Design Options and Consideration for Periprosthetic Joint Infection. J Arthroplasty. 2020;35(3s):S31-s4.
- 13. Warwick HS, Tan TL, Weiser L, Shau DN, Barry JJ, Hansen EN. Comparison of Static and Articulating Spacers After Periprosthetic Joint Infection. J Am Acad Orthop Surg Glob Res Rev. 2023;7(2).
- 14. Chiang ER, Su YP, Chen TH, Chiu FY, Chen WM. Comparison of articulating and static spacers regarding infection with resistant organisms in total knee arthroplasty. Acta Orthop. 2011;82(4):460-4.
- 15. Ding H, Yao J, Chang W, Liu F. Comparison of the efficacy of static versus articular spacers in two-stage revision surgery for the treatment of infection following total knee arthroplasty: a meta-analysis. J Orthop Surg Res. 2017;12(1):151.
- 16. Emerson RH, Jr., Muncie M, Tarbox TR, Higgins LL. Comparison of a static with a mobile spacer in total knee infection. Clin Orthop Relat Res. 2002(404):132-8.
- 17. Freeman MG, Fehring TK, Odum SM, Fehring K, Griffin WL, Mason JB. Functional advantage of articulating versus static spacers in 2-stage revision for total knee arthroplasty infection. J Arthroplasty. 2007;22(8):1116-21.
- 18. Massin P, Delory T, Lhotellier L, Pasquier G, Roche O, Cazenave A, et al. Infection recurrence factors in one- and two-stage total knee prosthesis exchanges. Knee Surg Sports Traumatol Arthrosc. 2016;24(10):3131-9.
- 19. Tikhilov R, Bozhkova S, Denisov A, Labutin D, Shubnyakov I, Razorenov V, et al. Risk factors and a prognostic model of hip periprosthetic infection recurrence after surgical treatment using articulating and non-articulating spacers. Int Orthop. 2016;40(7):1381-7.
- 20. Faschingbauer M, Bieger R, Reichel H, Weiner C, Kappe T. Complications associated with 133 static, antibiotic-laden spacers after TKA. Knee Surg Sports Traumatol Arthrosc. 2016;24(10):3096-9.
- 21. Bowman EC, Malkani AL. Point/Counterpoint: Static vs Articulating Spacers-Static Spacers for Resection Arthroplasty of the Knee. J Arthroplasty. 2020;35(3s):S35-s9.
- 22. Charette RS, Melnic CM. Two-Stage Revision Arthroplasty for the Treatment of Prosthetic Joint Infection. Curr Rev Musculoskelet Med. 2018;11(3):332-40.

- 23. Hsieh PH, Shih CH, Chang YH, Lee MS, Shih HN, Yang WE. Two-stage revision hip arthroplasty for infection: comparison between the interim use of antibiotic-loaded cement beads and a spacer prosthesis. J Bone Joint Surg Am. 2004;86(9):1989-97.
- 24. Hofmann AA, Goldberg T, Tanner AM, Kurtin SM. Treatment of infected total knee arthroplasty using an articulating spacer: 2- to 12-year experience. Clin Orthop Relat Res. 2005(430):125-31.
- 25. Voleti PB, Baldwin KD, Lee GC. Use of static or articulating spacers for infection following total knee arthroplasty: a systematic literature review. J Bone Joint Surg Am. 2013;95(17):1594-9.
- 26. Jaekel DJ, Day JS, Klein GR, Levine H, Parvizi J, Kurtz SM. Do dynamic cement-on-cement knee spacers provide better function and activity during two-stage exchange? Clin Orthop Relat Res. 2012;470(9):2599-604.
- 27. Lunz A, Omlor GW, Schmidt G, Moradi B, Lehner B, Streit MR. Quality of life, infection control, and complication rates using a novel custom-made articulating hip spacer during two-stage revision for periprosthetic joint infection. Arch Orthop Trauma Surg. 2022;142(12):4041-54.
- 28. Lunz A, Omlor GW, Voss MN, Geisbüsch A, Renkawitz T, Lehner B. Static spacers play a crucial role in the treatment of complex periprosthetic joint infections of the knee. Knee Surg Sports Traumatol Arthrosc. 2024;32(7):1766-74.
- 29. Abdel MP, Barreira P, Battenberg A, Berry DJ, Blevins K, Font-Vizcarra L, et al. Hip and Knee Section, Treatment, Two-Stage Exchange Spacer-Related: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty. 2019;34(2s):S427-s38.
- 30. Anagnostakos K, Fink B. Antibiotic-loaded cement spacers lessons learned from the past 20 years. Expert Rev Med Devices. 2018;15(3):231-45.
- 31. Craig A, King SW, van Duren BH, Veysi VT, Jain S, Palan J. Articular spacers in two-stage revision arthroplasty for prosthetic joint infection of the hip and the knee. EFORT Open Rev. 2022;7(2):137-52.
- 32. Jacobs C, Christensen CP, Berend ME. Static and mobile antibiotic-impregnated cement spacers for the management of prosthetic joint infection. J Am Acad Orthop Surg. 2009;17(6):356-68.
- 33. Lachiewicz PF, Wellman SS, Peterson JR. Antibiotic Cement Spacers for Infected Total Knee Arthroplasties. J Am Acad Orthop Surg. 2020;28(5):180-8.
- 34. Li Z, Xu C, Chen J. Articulating spacers: what are available and how to utilize them? Arthroplasty. 2023;5(1):22.
- 35. Lu J, Han J, Zhang C, Yang Y, Yao Z. Infection after total knee arthroplasty and its gold standard surgical treatment: Spacers used in two-stage revision arthroplasty. Intractable Rare Dis Res. 2017;6(4):256-61.
- 36. Pivec R, Naziri Q, Issa K, Banerjee S, Mont MA. Systematic review comparing static and articulating spacers used for revision of infected total knee arthroplasty. J Arthroplasty. 2014;29(3):553-7.e1.
- 37. Tao J, Yan Z, Pu B, Chen M, Hu X, Dong H. Comparison of dynamic and static spacers for the treatment of infections following total knee replacement: a systematic review and meta-analysis. J Orthop Surg Res. 2022;17(1):348.
- 38. Vasarhelyi E, Sidhu SP, Somerville L, Lanting B, Naudie D, Howard J. Static vs Articulating Spacers for Two-Stage Revision Total Knee Arthroplasty: Minimum Five-Year Review. Arthroplast Today. 2022;13:171-5.

- 39. Choi HR, Malchau H, Bedair H. Are prosthetic spacers safe to use in 2-stage treatment for infected total knee arthroplasty? J Arthroplasty. 2012;27(8):1474-9.e1.
- 40. Citak M, Citak M, Kendoff D. Dynamischer vs. statischer Zementspacer in der Knietotalendoprotheseninfektion. Der Orthopäde. 2015;8(44):599-606.
- 41. Fehring TK, Odum S, Calton TF, Mason JB. Articulating versus static spacers in revision total knee arthroplasty for sepsis. The Ranawat Award. Clin Orthop Relat Res. 2000(380):9-16.
- 42. Fiore M, Sambri A, Filippini M, Morante L, Giannini C, Paolucci A, et al. Are Static Spacers Superior to Articulated Spacers in the Staged Treatment of Infected Primary Knee Arthroplasty? A Systematic Review and Meta-Analysis. J Clin Med. 2022;11(16).
- 43. Grant C, Chang J, Poehlein E, Green CL, Seidelman J, Jiranek W. Static Versus Articulating Spacer: Does Infectious Pathogen Type Affect Treatment Success? Clin Orthop Relat Res. 2024;482(10):1850-5.
- 44. Hollyer I, Ivanov D, Kappagoda S, Lowenberg DW, Goodman SB, Amanatullah DF. Selecting a high-dose antibiotic-laden cement knee spacer. J Orthop Res. 2023;41(7):1383-96.
- 45. Jämsen E, Stogiannidis I, Malmivaara A, Pajamäki J, Puolakka T, Konttinen YT. Outcome of prosthesis exchange for infected knee arthroplasty: the effect of treatment approach. Acta Orthop. 2009;80(1):67-77.
- 46. Kirschbaum S, Weynandt C, Fuchs M, Perka C, Gwinner C. Major Shortening of the Patellar Tendon During Septic Two-Stage Knee Arthroplasty Revision Using Static Spacers. J Arthroplasty. 2022;37(9):1851-7.
- 47. Kong L, Mei J, Ge W, Jin X, Chen X, Zhang X, Zhu C. Application of 3D Printing-Assisted Articulating Spacer in Two-Stage Revision Surgery for Periprosthetic Infection after Total Knee Arthroplasty: A Retrospective Observational Study. Biomed Res Int. 2021;2021:3948638.
- 48. Lin TL, Tsai CH, Fong YC, Shie MY, Chen HY, Chen YW. Cruciate-Retaining vs Posterior-Stabilized Antibiotic Cement Articulating Spacers for Two-Stage Revision of Prosthetic Knee Infection: A Retrospective Cohort Study. J Arthroplasty. 2021;36(11):3750-9.e2.
- 49. Oliva F, Ziello S, Maffulli N. Knee Spacers in Periprosthetic Joint Infections: A Narrative Review. Muscles, Ligaments & Tendons Journal (MLTJ). 2023;13(2).
- 50. Spinarelli A, Bizzoca D, Moretti L, Vicenti G, Garofalo R, Moretti B. The autoclaving and re-implantation of an infected prosthesis as a spacer during resection knee arthroplasty: a systematic review. Musculoskelet Surg. 2022;106(2):111-25.
- 51. Costanzo J, McCahon J, Tokarski AT, Deirmengian C, Bridges T, Fliegel BE, Deirmengian GK. Mechanical Complications of Hip and Knee Spacers Are Common. Cureus. 2023;15(5):e38496.
- 52. Cuckler JM. The infected total knee: management options. J Arthroplasty. 2005;20(4 Suppl 2):33-6.
- 53. Diamond OJ, Masri BA. Articulating antibiotic impregnated spacers in prosthetic joint infections: Where do we stand? Int J Surg. 2018;54(Pt B):345-50.
- 54. Johnson AJ, Sayeed SA, Naziri Q, Khanuja HS, Mont MA. Minimizing dynamic knee spacer complications in infected revision arthroplasty. Clin Orthop Relat Res. 2012;470(1):220-7.

- 55. Lee YS, Chen AF. Two-Stage Reimplantation in Infected Total Knee Arthroplasty. Knee Surg Relat Res. 2018;30(2):107-14.
- 56. Pitto RP, Spika IA. Antibiotic-loaded bone cement spacers in two-stage management of infected total knee arthroplasty. Int Orthop. 2004;28(3):129-33.
- 57. Spivey JC, Guild GN, 3rd, Scuderi GR. Use of Articulating Spacer Technique in Revision Total Knee Arthroplasty Complicated by Sepsis: A Systematic Meta-Analysis. Orthopedics. 2017;40(4):212-20.
- 58. Wyles CC, Abdel MP. Point/Counterpoint: Nonarticulating vs Articulating Spacers for Resection Arthroplasty of the Knee or Hip. J Arthroplasty. 2020;35(3s):S40-s4.
- 59. Park SJ, Song EK, Seon JK, Yoon TR, Park GH. Comparison of static and mobile antibiotic-impregnated cement spacers for the treatment of infected total knee arthroplasty. Int Orthop. 2010;34(8):1181-6.
- 60. Veltman ES, Moojen DJ, Glehr M, Poolman RW. Similar rate of infection eradication for functional articulating, prefabricated and custom-made spacers in 2-stage revision of the infected total hip: a literature review. Hip Int. 2016;26(4):319-26.
- 61. Tseng J, Oladipo VA, Acuña AJ, Jones CM, Tsintolas J, Levine BR. Evaluating Modern Spacer Options and Outcomes in Revision Hip Arthroplasty. J Arthroplasty. 2024;39(9s1):S236-s42.
- 62. Oladipo VA, Tseng J, Sporer S, Levine BR. Modern Description of Antibiotic Spacer Options for PJI in Revision Total Knee Arthroplasty: Clinical Outcomes and Infection Eradication Rates. J Arthroplasty. 2023;38(6s):S318-s25.
- 63. Preobrazhensky PM, Bozhkova SA, Kazemirsky AV, Tikhilov RM, Kulaba TA, Kornilov NN. Functional outcome of two-stage reimplantation in patients with periprosthetic joint infection after primary total knee arthroplasty. Int Orthop. 2019;43(11):2503-9.
- 64. Romanò CL, Gala L, Logoluso N, Romanò D, Drago L. Two-stage revision of septic knee prosthesis with articulating knee spacers yields better infection eradication rate than one-stage or two-stage revision with static spacers. Knee Surg Sports Traumatol Arthrosc. 2012;20(12):2445-53.
- 65. Egrise F, Kirsch M, Remen T, Roche O, Bevilacqua S, Mainard D. Articulated bipolar vs. non-articulated conventional spacers: A comparative study of results from two-stage treatment of chronic septic arthritis in prosthetic or native hips. Orthop Traumatol Surg Res. 2022;108(6):103302.
- 66. Lombardi AV, Jr., Karnes JM, Berend KR. A motion maintaining antibiotic delivery system. J Arthroplasty. 2007;22(4 Suppl 1):50-5.
- 67. Kuzyk PR, Dhotar HS, Sternheim A, Gross AE, Safir O, Backstein D. Two-stage revision arthroplasty for management of chronic periprosthetic hip and knee infection: techniques, controversies, and outcomes. J Am Acad Orthop Surg. 2014;22(3):153-64.
- 68. Nodzo SR, Boyle KK, Spiro S, Nocon AA, Miller AO, Westrich GH. Success rates, characteristics, and costs of articulating antibiotic spacers for total knee periprosthetic joint infection. Knee. 2017;24(5):1175-81.
- 69. Sambri A, Fiore M, Rondinella C, Morante L, Paolucci A, Giannini C, et al. Mechanical complications of hip spacers: a systematic review of the literature. Arch Orthop Trauma Surg. 2023;143(5):2341-53.

- 70. Risitano S, Sabatini L, Atzori F, Massè A, Indelli PF. Static antibiotic spacers augmented by calcium sulphate impregnated beads in revision TKA: Surgical technique and review of literature. J Orthop. 2018;15(2):313-8.
- 71. Hooper J, Arora P, Kappagoda S, Huddleston JI, 3rd, Goodman SB, Amanatullah DF. Articulating vs Static Spacers for Native Knee Infection in the Setting of Degenerative Joint Disease. Arthroplast Today. 2021;8:138-44.
- 72. Fink B, Grossmann A, Fuerst M, Schäfer P, Frommelt L. Two-stage cementless revision of infected hip endoprostheses. Clin Orthop Relat Res. 2009;467(7):1848-58.
- 73. Jones CW, Selemon N, Nocon A, Bostrom M, Westrich G, Sculco PK. The Influence of Spacer Design on the Rate of Complications in Two-Stage Revision Hip Arthroplasty. J Arthroplasty. 2019;34(6):1201-6.
- 74. Chalmers BP, Mabry TM, Abdel MP, Berry DJ, Hanssen AD, Perry KI. Two-Stage Revision Total Hip Arthroplasty With a Specific Articulating Antibiotic Spacer Design: Reliable Periprosthetic Joint Infection Eradication and Functional Improvement. J Arthroplasty. 2018;33(12):3746-53.
- 75. Haddad FS, Muirhead-Allwood SK, Manktelow AR, Bacarese-Hamilton I. Two-stage uncemented revision hip arthroplasty for infection. J Bone Joint Surg Br. 2000;82(5):689-94.
- 76. Wentworth SJ, Masri BA, Duncan CP, Southworth CB. Hip prosthesis of antibiotic-loaded acrylic cement for the treatment of infections following total hip arthroplasty. J Bone Joint Surg Am. 2002;84-A Suppl 2:123-8.
- 77. Fink B, Rechtenbach A, Büchner H, Vogt S, Hahn M. Articulating spacers used in two-stage revision of infected hip and knee prostheses abrade with time. Clin Orthop Relat Res. 2011;469(4):1095-102.
- 78. Kayani B, Bengoa F, Howard LC, Neufeld ME, Masri BA. Articulating Spacers in Total Hip Arthroplasty: Surgical Technique and Outcomes. Orthop Clin North Am. 2024;55(2):181-92.
- 79. Veltman ES, Moojen DJF, Poolman RW. Improved patient reported outcomes with functional articulating spacers in two-stage revision of the infected hip. World J Orthop. 2020;11(12):595-605.
- 80. Khanna A, Carter B, Gill I. Two-Stage Revision Hip Arthroplasty with or without the Use of an Interim Spacer for Managing Late Prosthetic Infection: A Systematic Review of the Literature. Orthop Surg. 2021;13(2):384-94.
- 81. Wu B, Su J, Zhang Z, Zeng J, Fang X, Li W, et al. Prosthetic spacers in two-stage revision for knee periprosthetic joint infection achieve better function and similar infection control. Bone Joint Res. 2024;13(6):306-14.
- 82. Yang FS, Lu YD, Wu CT, Blevins K, Lee MS, Kuo FC. Mechanical failure of articulating polymethylmethacrylate (PMMA) spacers in two-stage revision hip arthroplasty: the risk factors and the impact on interim function. BMC Musculoskelet Disord. 2019;20(1):372.
- 83. Lunz A, Sonntag R, Kretzer JP, Jaeger S, Bormann T, Streit MR, et al. Hip Spacers with a Metal-on-Cement Articulation Did Not Show Significant Surface Alterations of the Metal Femoral Head in Two-Stage Revision for Periprosthetic Joint Infection. Materials (Basel). 2020;13(17).
- 84. Yousef M, Zheng H, Yang W, Ayers DC. Predictive Factors of Pain and Functional Outcome 5 Years Following Total Hip Arthroplasty: A Prospective Function

- and Outcomes Research for Comparative Effectiveness in Total Joint Replacement Cohort Study. J Arthroplasty. 2024;39(9s1):S105-s11.
- 85. Meißner N, Halder AM, Torney O, Preis A, Sina JP, Schrednitzki D. No shortening of the patellar tendon during two-stage total knee arthroplasty revision using articulating spacers. Arch Orthop Trauma Surg. 2024;144(9):4437-41.
- 86. Limtong J, Pannu TS, Villa JM, Riesgo AM, Higuera CA. Comparison of outcomes between static spacers versus articulating spacers in the setting of revision periprosthetic knee infections: A systematic review. Annals of Joint. 2021;6.
- 87. Erivan R, Lecointe T, Villatte G, Mulliez A, Descamps S, Boisgard S. Complications with cement spacers in 2-stage treatment of periprosthetic joint infection on total hip replacement. Orthop Traumatol Surg Res. 2018;104(3):333-9.
- 88. Van Thiel GS, Berend KR, Klein GR, Gordon AC, Lombardi AV, Della Valle CJ. Intraoperative molds to create an articulating spacer for the infected knee arthroplasty. Clin Orthop Relat Res. 2011;469(4):994-1001.
- 89. Rava A, Bruzzone M, Cottino U, Enrietti E, Rossi R. Hip Spacers in Two-Stage Revision for Periprosthetic Joint Infection: A Review of Literature. Joints. 2019;7(2):56-63.
- 90. Golgelioglu F, Oguzkaya S, Misir A, Guney A. The Effect of Time Spent with a Dynamic Spacer on Clinical and Functional Outcomes in Two-Stage Revision Knee Arthroplasty. Indian J Orthop. 2020;54(6):824-30.
- 91. Kugelman D, Roof M, Egol A, Guanche I, Chen AF, Schwarzkopf R, Aggarwal VK. Comparing Articulating Spacers for Periprosthetic Joint Infection After Primary Total Hip Arthroplasty: All-Cement Versus Real-Component Articulating Spacers. J Arthroplasty. 2022;37(7s):S657-s63.
- 92. García-Oltra E, Bori G, Tomas X, Gallart X, Garcia S, Soriano A. Radiological evaluation of acetabular erosion after antibiotic-impregnated polymethylmethacrylate spacer (Spacer-G). J Arthroplasty. 2013;28(6):1021-4.
- 93. Rogers BA, Kuchinad R, Garbedian S, Backstein D, Gross AE, Safir OA. Cement augmentation of the acetabulum for revision total hip arthroplasty for infection. J Arthroplasty. 2015;30(2):270-1.
- 94. Faschingbauer M, Reichel H, Bieger R, Kappe T. Mechanical complications with one hundred and thirty eight (antibiotic-laden) cement spacers in the treatment of periprosthetic infection after total hip arthroplasty. Int Orthop. 2015;39(5):989-94.
- 95. Garceau S, Warschawski Y, Sanders E, Gross A, Safir O, Kuzyk P. Impact of Hip Antibiotic Spacer Dislocation on Final Implant Position and Outcomes. J Arthroplasty. 2019;34(9):2107-10.
- 96. Burastero G, Basso M, Carrega G, Cavagnaro L, Chiarlone F, Salomone C, et al. Acetabular spacers in 2-stage hip revision: is it worth it? A single-centre retrospective study. Hip Int. 2017;27(2):187-92.
- 97. Raspanti F, Zanna L, Sangaletti R, Innocenti M, Benazzo F, Civinini R, Mugnaini M. The role of acetabular cement augmentation in 2-stage revision arthroplasty for prosthetic joint infection of the hip. Arch Orthop Trauma Surg. 2024;144(12):5251-60.
- 98. Heckmann ND, Wang JC, Richardson MK, Biedermann BM, DiGiovanni RM, Christ AB, et al. Cemented Constrained Liners Used as an Articulating Hip Spacer for the Treatment of Chronic Prosthetic Joint Infection. Arthroplast Today. 2024;29:101422.

- 99. Anagnostakos K, Jung J, Schmid NV, Schmitt E, Kelm J. Mechanical complications and reconstruction strategies at the site of hip spacer implantation. Int J Med Sci. 2009;6(5):274-9.
- 100. Glenn GT, Apple AE, Mears SC, Barnes CL, Stronach BM, Siegel ER, Stambough JB. Articulating Hip Spacers with a Constrained Acetabular Liner: Effect of Acetabular Bone Loss and Cementation Quality. Antibiotics (Basel). 2023;12(9).
- 101. Pattyn C, De Geest T, Ackerman P, Audenaert E. Preformed gentamicin spacers in two-stage revision hip arthroplasty: functional results and complications. Int Orthop. 2011;35(10):1471-6.
- 102. Puetzler J, Hofschneider M, Gosheger G, Theil C, Schulze M, Schwarze J, et al. Evaluation of time to reimplantation as a risk factor in two-stage revision with static spacers for periprosthetic knee joint infection. J Orthop Traumatol. 2024;25(1):15.
- 103. Citak M, Masri BA, Springer B, Argenson JN, Kendoff DO. Are Preformed Articulating Spacers Superior To Surgeon-Made Articulating Spacers in the Treatment Of PJI in THA? A Literature Review. Open Orthop J. 2015;9:255-61.
- 104. Fei Z, Zhang Z, Wang Y, Zhang H, Xiang S. Comparing the Efficacy of Articulating Spacers in Two-Stage Revision for Periprosthetic Joint Infection Following Total Knee Arthroplasty: All-Cement Spacers vs Sterilized Replanted Metal-Polyethylene Spacers. Int J Gen Med. 2022;15:3293-301.
- 105. Hebert CK, Williams RE, Levy RS, Barrack RL. Cost of treating an infected total knee replacement. Clin Orthop Relat Res. 1996(331):140-5.
- 106. Premkumar A, Kolin DA, Farley KX, Wilson JM, McLawhorn AS, Cross MB, Sculco PK. Projected Economic Burden of Periprosthetic Joint Infection of the Hip and Knee in the United States. J Arthroplasty. 2021;36(5):1484-9.e3.
- 107. Brunnekreef J, Hannink G, Malefijt Mde W. Recovery of knee mobility after a static or mobile spacer in total knee infection. Acta Orthop Belg. 2013;79(1):83-9.