G5: Is there a role for universal screening and decolonization for methicillin-resistant *Staphylococcus aureus* (MRSA) in patients undergoing major orthopaedic procedures?

Ahmad Abbaszadeh, Saad Tarabichi, Mark J. Spangehl, Joshua S. Bingham, André Grenho, Sergio Rodrigues Goncalves, Daniel Schweitzer, Hazem Alkhawashki, Linda Suleiman, Ronald E. Delanois, Javad Parvizi.

Response/Recommendation:

There is no concrete evidence to support universal screening for methicillin-resistant *Staphylococcus aureus* (MRSA) in patients undergoing orthopaedic procedures. Given the cost-effectiveness of modern decolonization protocols, we recommend universal nasal decolonization in all patients undergoing major orthopaedic procedures, preferably using a non-antibiotic antiseptic agent.

Level of Evidence: Moderate

Delegate Vote:

Rationale:

Nasal colonization with *Staphylococcus aureus* in patients undergoing surgery is increasingly prevalent and has been shown to increase the risk of surgical site infection (SSI) by 3- to 6-fold [1]. Current protocols for the eradication of nasal *Staphylococcus aureus* carriage consist of the administration of topical or systemic antimicrobial agents [2,3] and subsequent screening for methicillin-sensitive *Staphylococcus aureus* (MSSA) and methicillin-resistant *Staphylococcus aureus* (MRSA) using culture or gene sequencing-based techniques [4]. However, the efficacy of these interventions in mitigating the risk of SSI remains unclear and is inconsistent across the existing literature [5–7].

We conducted a systematic review to ascertain whether the screening and decolonization of the MRSA group decreased the risk of SSI compared with the control group (no screening and decolonization) in orthopaedic procedures.

A random effects model with a random intercept logistic regression was used [8]. Heterogeneity was evaluated using the I^2 statistic and the Chi-square test. The systematic review included 10 studies encompassing 55,816 patients to evaluate the impact of MRSA screening and decolonization on the development of SSI following orthopaedic surgery [9–18]. The majority of included studies were retrospective cohort studies (n = 6, 60%), with historically controlled trials (n = 2, 20%) and prospective cohorts (n = 2, 20%) comprising the remainder. Heterogeneity across studies was substantial, with between-study variance estimated at τ^2 = 0.856 (95% confidence interval (CI): 0.304–4.392) and τ = 0.925 (95% CI: 0.551 – 2.096). The I² statistic of 93.2% (95% CI: 89.5 – 95.6%) indicated that over 93% of the variability in effect estimates arose from actual differences among studies rather than chance, further supported by the Q test (Q = 132.32, degrees of freedom (df) = 9, P < 0.0001).

In total, 10 studies evaluated the SSI risk between patients who received both screening and decolonization when compared to those who did not receive screening or decolonization. The

pooled prevalence of MRSA colonization across studies reporting this metric was 3.1% (0.47 – 5.0%). Although the risk of SSI in the MRSA decolonization group was lower than the control group (0.76 versus 1.05%), under the random-effects model, MRSA decolonization did not significantly reduce the risk of SSI (OR = 0.62, 95% CI: 0.32 - 1.22, P = 0.17). Among the 10 studies, four concluded no difference in SSI rates between decolonized and control groups, while five favored screening and decolonization. Notable outliers included the study by Malcolm et al. (2016), which reported a pronounced decrease in SSI risk (odd ratio (OR) = 0.03, 95% CI: 0.002 - 0.50), and the study by Baratz et al. (2015), which observed a paradoxically increased risk of SSI in screened and decolonized patients (OR = 4.26, 95% CI: 3.00 - 6.05).

Subgroup analysis of arthroplasty procedures (90,316 patients) yielded similar results (OR = 0.65, 95% CI: 0.31 - 1.38, P = 0.26), with heterogeneity remaining high (I² = 93.3%, τ^2 = 0.970). Larger cohorts more frequently supported decolonization, whereas smaller studies reported mixed outcomes. Moreover, five studies evaluated the cost-effectiveness of MRSA screening and decolonization, and all concluded that it can be a cost-effective approach [9,19–22]. While this analysis found no statistically significant reduction in SSI risk with MRSA decolonization (OR = 0.62, P = 0.17), the high heterogeneity (I² > 93%) underscores critical variability in study designs, decolonization protocols, and patient populations. More extensive studies highlighted potential benefits, and cost-effectiveness was noted in select settings, emphasizing the need for tailored approaches.

Based on currently available literature, universal screening protocols for MSSA and MRSA in patients undergoing orthopaedic procedures appear to have limited utility. In light of recent evidence demonstrating the cost-effectiveness and efficacy of modern universal decolonization protocols [23], we recommend routine nasal decolonization of all patients undergoing major orthopaedic procedures, preferably using a non-antibiotic antiseptic agent.

REFERENCES

- [1] Perl TM, Golub JE. New approaches to reduce Staphylococcus aureus nosocomial infection rates: treating S. aureus nasal carriage. Ann Pharmacother 1998;32:S7-16. https://doi.org/10.1177/106002809803200104.
- [2] Schwarzkopf R, Takemoto RC, Immerman I, Slover JD, Bosco JA. Prevalence of Staphylococcus aureus colonization in orthopaedic surgeons and their patients: a prospective cohort controlled study. J Bone Joint Surg Am 2010;92:1815–9. https://doi.org/10.2106/JBJS.I.00991.
- [3] van Rijen MML, Bonten M, Wenzel RP, Kluytmans JAJW. Intranasal mupirocin for reduction of Staphylococcus aureus infections in surgical patients with nasal carriage: a systematic review. J Antimicrob Chemother 2008;61:254–61. https://doi.org/10.1093/jac/dkm480.
- [4] Bode LGM, Kluytmans JAJW, Wertheim HFL, Bogaers D, Vandenbroucke-Grauls CMJE, Roosendaal R, et al. Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. N Engl J Med 2010;362:9–17. https://doi.org/10.1056/NEJMoa0808939.
- [5] Patel H, Khoury H, Girgenti D, Welner S, Yu H. Burden of Surgical Site Infections Associated with Arthroplasty and the Contribution of Staphylococcus aureus. Surg Infect 2016;17:78–88. https://doi.org/10.1089/sur.2014.246.
- [6] Bengtsson S, Hambraeus A, Laurell G. Wound infections after surgery in a modern operating suite: clinical, bacteriological and epidemiological findings. J Hyg (Lond) 1979;83:41–57. https://doi.org/10.1017/s002217240002581x.
- [7] Goyal N, Miller A, Tripathi M, Parvizi J. Methicillin-resistant Staphylococcus aureus (MRSA): colonisation and pre-operative screening. Bone Jt J 2013;95-B:4–9. https://doi.org/10.1302/0301-620X.95B1.27973.
- [8] Stijnen T, Hamza TH, Ozdemir P. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med 2010;29:3046–67. https://doi.org/10.1002/sim.4040.
- [9] Suratwala S, Kommareddy D, Duvvuri P, Woltmann J, Segal A, Krauss E. Costeffectiveness and clinical utility of universal pre-admission MRSA screening in total joint arthroplasty patients. J Hosp Infect 2023;138:27–33. https://doi.org/10.1016/j.jhin.2023.05.012.
- [10] Craxford S, Marson BA, Oderuth E, Nightingale J, Agrawal Y, Ollivere B. Methicillin-resistant Staphylococcus aureus in hip fracture: routine screening and decolonization of trauma patients may reduce rates of MRSA infection but not overall deep infection rates or mortality. Bone Jt J 2021;103-B:170–7. https://doi.org/10.1302/0301-620X.103B1.BJJ-2020-0659.R1.
- [11] Lok CC, Alexander CPH, Wah HY, Ho FJC. The application of evidence-based bundle approach to reduce surgical site infection in geriatric hip fracture patients: A single centre experience. J Orthop Trauma Rehabil 2020;27:133–41. https://doi.org/10.1177/2210491720928486.
- [12] Sporer SM, Rogers T, Abella L. Methicillin-Resistant and Methicillin-Sensitive Staphylococcus aureus Screening and Decolonization to Reduce Surgical Site Infection in Elective Total Joint Arthroplasty. J Arthroplasty 2016;31:144–7. https://doi.org/10.1016/j.arth.2016.05.019.

- [13] Malcolm TL, Robinson LD, Klika AK, Ramanathan D, Higuera CA, Murray TG. Predictors of Staphylococcus aureus Colonization and Results after Decolonization. Interdiscip Perspect Infect Dis 2016;2016:4367156. https://doi.org/10.1155/2016/4367156.
- [14] Baratz MD, Hallmark R, Odum SM, Springer BD. Twenty Percent of Patients May Remain Colonized With Methicillin-resistant Staphylococcus aureus Despite a Decolonization Protocol in Patients Undergoing Elective Total Joint Arthroplasty. Clin Orthop 2015;473:2283–90. https://doi.org/10.1007/s11999-015-4191-3.
- [15] Kim DH, Spencer M, Davidson SM, Li L, Shaw JD, Gulczynski D, et al. Institutional prescreening for detection and eradication of methicillin-resistant Staphylococcus aureus in patients undergoing elective orthopaedic surgery. J Bone Joint Surg Am 2010;92:1820–6. https://doi.org/10.2106/JBJS.I.01050.
- [16] Hadley S, Immerman I, Hutzler L, Slover J, Bosco J. Staphylococcus aureus Decolonization Protocol Decreases Surgical Site Infections for Total Joint Replacement. Arthritis 2010;2010:924518. https://doi.org/10.1155/2010/924518.
- [17] Sankar B, Hopgood P, Bell KM. The role of MRSA screening in joint-replacement surgery. Int Orthop 2005;29:160–3. https://doi.org/10.1007/s00264-005-0649-3.
- [18] Sott AH, Jones R, Davies S, Cumberland N. The Value of Pre-Operative Screening for MRSA in the Reduction of Sepsis in Total Hip Replacement Associated with MRSA. A Prospective Audit. HIP Int 2001;11:102–6. https://doi.org/10.1177/112070000101100206.
- [19] Von Rehlingen-Prinz F, Röhrs M, Sandiford N, Garcia EG, Schulmeyer J, Salber J, et al. Preoperative MRSA screening using a simple questionnaire prior elective total joint replacement. Arch Orthop Trauma Surg 2024;144:5157–64. https://doi.org/10.1007/s00402-024-05315-4.
- [20] Tonotsuka H, Sugiyama H, Amagami A, Yonemoto K, Sato R, Saito M. What is the most cost-effective strategy for nasal screening and Staphylococcus aureus decolonization in patients undergoing total hip arthroplasty? BMC Musculoskelet Disord 2021;22:129. https://doi.org/10.1186/s12891-021-04008-y.
- [21] Slover J, Haas JP, Quirno M, Phillips MS, Bosco JA. Cost-effectiveness of a Staphylococcus aureus screening and decolonization program for high-risk orthopedic patients. J Arthroplasty 2011;26:360–5. https://doi.org/10.1016/j.arth.2010.03.009.
- [22] Williams DM, Miller AO, Henry MW, Westrich GH, Ghomrawi HMK. Cost-Effectiveness of Staphylococcus aureus Decolonization Strategies in High-Risk Total Joint Arthroplasty Patients. J Arthroplasty 2017;32:S91–6. https://doi.org/10.1016/j.arth.2017.01.050.
- [23] Rieser GR, Moskal JT. Cost Efficacy of Methicillin-Resistant Staphylococcus aureus Decolonization With Intranasal Povidone-Iodine. J Arthroplasty 2018;33:1652–5. https://doi.org/10.1016/j.arth.2018.01.033.