Sp41: Can we confidently differentiate Modic inflammatory changes from acute pyogenic infections in MRI?

Teli Marco, Nagashima Hideki, Kaito Takashi, S Rajasekaran, Gnanaprakash Gurusamy **Recommendation:** The current literature shows that it is very difficult to differentiate between Modic Type 1 and early infection by both conventional and contrast MRI sequences. It appears at this stage that the differentiation of Modic Type 1 changes from acute pyogenic spondylodiscitis in patients with low back pain requires a systematic, multimodal approach, with integration of advanced imaging techniques such as CT, FDG-PET, and MRI features. Early recognition of these features is essential to guide appropriate clinical management and improve patient outcomes.

Strength of Recommendation: Low- Moderate

Delegate Vote:

Rationale: Low back pain (LBP) is a common clinical condition with a wide differential diagnosis. Modic Type 1 changes, characterized by edema-like signal alterations in vertebral endplates on MRI, often present a diagnostic challenge in clinical practice due to overlapping imaging and clinical features with acute pyogenic spondylodiscitis. The inability to distinguish between these two conditions on conventional MRI and post-contrast sequences further complicates the diagnostic process. This consensus statement provides guidance based on the available literature to aid in differentiating degenerative Modic Type 1 changes and spondylodiscitis, ensuring timely and accurate diagnosis and management.

Key Diagnostic Differentiators:

- 1. Role of Diffusion Weighted MR (DWI) and CT Imaging:
- When results of clinical and conventional MR findings are equivocal, diffusion-weighted MR imaging provides significant advantages in the differential diagnosis between degenerative and pyogenic spondylodiscitis changes of the spine.
- CT imaging is valuable in identifying degenerative changes, such as discal vacuum phenomenon or well-defined sclerosis and erosions of vertebral endplates without significant bone destruction on levels where differential diagnosis with DWI is unresolved. These findings strongly favor a diagnosis of Modic Type 1 changes over spondylodiscitis. (1)

2. FDG-PET Imaging:

- The addition of FDG-PET imaging enhances diagnostic accuracy in distinguishing between Modic changes and spinal infections. FDG-PET is particularly sensitive in detecting spondylodiscitis and can help identify infectious activity that may not be apparent on conventional MRI. (2)

3. Claw Sign on DWI - MRI:

- The presence of a claw sign on 3.0 T MRI a sharp demarcation of edema-like changes at the endplate is highly suggestive of degenerative Modic changes. Conversely, the absence of a claw sign strongly suggests the presence of diskitis/osteomyelitis. (3)
- 4. Endplate contour and Paravertebral/Psoas Enhancement on MRI:
- In high field (3.0T) MRI sequences with vertebral bone marrow oedema, the presence of an irregular, yet intact T1-w endplate contour, provides high diagnostic accuracy for identifying degenerative changes. In contrast, the absence of an irregular, yet intact endplate contour is highly suggestive of infection, and particularly of early-stage spondylodiscitis in patients without abscess formation.
- Paravertebral and/or psoas muscle enhancement on gadolinium-enhanced sequences is more commonly associated with late-stage spondylodiscitis rather than early-stage disease or Modic Type 1 changes. (4)

5. Multimodality Imaging and Endplate Scoring:

- Incorporating multimodality imaging techniques, such as combining CT with detailed endplate scoring, can provide deeper insights into the etiology of Modic changes. This approach can help identify degenerative patterns that may otherwise be overlooked on MRI alone. (1,5)

Clinical Implication: Timely and Accurate Diagnosis: Differentiating Modic Type 1 changes from spondylodiscitis is critical to ensure appropriate treatment. Misdiagnosis of spondylodiscitis may lead to unnecessary antibiotic therapy, while overlooking infection can result in severe complications such as abscess formation and/or sepsis. Integration of Multimodal Imaging: Incorporating advanced imaging modalities such as FDG-PET, CT, high field MRI and endplate scoring into clinical workflows can improve diagnostic precision.

References:

- 1. Reliability of diffusion weighted MR imaging in differentiating degenerative and infectious end plate changes. Radiology and Oncology Volume 44, Issue 2, pp. 97-102 published 2010-01-01. DOI 10.2478/v10019-010-0006-z.
- 2. 18F-fluorodeoxyglucose-PET for patients with suspected spondylitis showing Modic change. Spine Volume 35, Issue 26, pp. E1599-603 published 2010-12-15. DOI 10.1097/brs.0b013e3181d254b4.
- Diffusion-Weighted MRI "Claw Sign" Improves Differentiation of Infectious from Degenerative Modic Type 1 Signal Changes of the Spine. American Journal of Neuroradiology - Volume 35, Issue 8, pp. 1647-1652 - published 2014-01-01. DOI 10.3174/ajnr.A3948
- 4. Vertebral Bone Marrow and Endplate Assessment on MR Imaging for the Differentiation of Modic Type 1 endplate changes and infectious spondylodiscitis. Journal of Clinical Medicine Volume 9, Issue 3, pp. published 2020-01-01. DOI 10.3390/jcm9030826.
- 5. Are Modic changes 'Primary infective endplatitis'? -insights from multimodal imaging of non-specific low back pain patients and development of a radiological 'Endplate infection probability score'. European Spine Journal Volume 31, Issue 11, pp. 2884-2896 published 2022-11-01. DOI 10.1007/s00586-022-07335-3