HK 17: Is there a role for serum procalcitonin for diagnosis of periprosthetic joint infection (PJI).?

Mohammad K. Abdelnasser, Levent Bayam, Sasheela Ponnampalavanar, Imelda Lumban-Gaol, Muhammad Amin Chinoy, Rares-Mircea Birlutiu, Ahmed A.Hassan, Thorsten Seyler.

Response/Recommendation: There is no role for the use of serum procalcitonin for diagnosis of periprosthetic joint infection (PJI).

Level of Evidence: Strong

Delegate Vote:

Rationale:

Procalcitonin (PCT) is a precursor of calcitonin. While serum PCT in healthy uninfected individuals is very low, increased serum levels have been noted in systemic bacterial infection [1, 2]. Procalcitonin has been proposed as an alternative biomarker for diagnosing periprosthetic joint infection (PJI), particularly in some cases where traditional serum and synovial biomarkers show lower accuracy. These include early postoperative infection, chronic, deep or low-grade infection which elicit a less pronounced systemic inflammatory response [3] as well as in some cases of non-infectious causes of CRP elevation as in inflammatory arthritis and obesity. [4] While many studies reported high diagnostic accuracy for PCT in systemic bacterial infection [5], the reported results for PCT in PJI have been highly variable.

The aim of this comprehensive systematic review and metanalysis was to evaluate the diagnostic accuracy of PCT in PJI. The systematic literature search was conducted by two independent reviewers using the PubMed/Medline, Web of Science and Cochrane databases based on selected MESH terms related to PJI and serum procalcitonin. We included clinical studies on PJI exploring diagnostic accuracy of serum procalcitonin as a biological marker. A standardized data extraction form was created and pilot-tested to collect study characteristics and outcomes. Risk of bias (ROB) of the included studies was assessed using the QUADAS-2 tool[6].

Fourteen studies were included in the final analysis, enrolling a total of 993 patients. Among them, 561 cases involved the hip, 465 the knee, and 7 the shoulder. The optimal PCT cutoff varied across the studies. Three studies [7-9] identified 0.5 ng/mL as the optimal cutoff, while two studies [10, 11] reported 0.1 ng/mL. Additional cutoffs reported were 0.3 ng/mL [12], 0.35 ng/mL [13], 0.05 ng/mL [14], 0.081 ng/mL [15], 2.29 ng/mL[16], and 46 ng/mL [17]. Two studies [18, 19] did not specify the optimal cutoff, and one study [20] identified 0.025 ng/mL as the optimal threshold for detecting low-grade infections. Eight studies [10, 11, 13-17, 20]used the MSIS criteria [21] for PJI diagnosis, one study [8] used ICM definition 2013 [22], one study [7] used ICM definition 2018 [23], three studies [9, 12, 18] relied on culture and histological examination without using a specific definition, and one study [19] did not mention their criteria for PJI diagnosis.

The pooled sensitivity of PCT for diagnosing PJI was 0.47 (95% CI: 0.42–0.51) and the pooled specificity was 0.84 (95% CI: 0.80–0.87) (Figure; 1,2). The pooled positive likelihood ratio (PLR) was 4.02 (95% CI: 2.11–7.66), suggesting that PCT is moderately useful for ruling in PJI. However, the pooled negative likelihood ratio (NLR) was 0.62 (95% CI: 0.50–0.77), reflecting limited ability to rule out PJI effectively. The pooled diagnostic

odds ratio (DOR) was 7.91 (95% CI: 4.18–14.98), and the area under SROC (the pooled AUC) was 0.7916) (Figure;3). This indicates that PCT has moderate diagnostic efficacy in distinguishing between septic and aseptic cases. This means that while PCT can provide some diagnostic value, its moderate accuracy limits its reliability, particularly in scenarios requiring high precision, such as detecting low-grade infections.

Bottner et al [12] reported a low sensitivity of 33 % for PCT. However, they claimed that PCT is highly specific for diagnosis of PJI (98%). They suggested that PCT could serve as a useful confirmatory tool in patients with positive CRP or elevated levels of interlukin-6. Similarly, Randau et al [17] reported a low sensitivity (12.9%) and high specificity (100 %) of PCT. Conversely, Glehr et al [13] reported that PCT is a sensitive but less specific marker for PJI. With a sensitivity of 90% and specificity of 67%, Glehr et al reported that PCT is a useful marker for PJI. Tahta et al [10] demonstrated that PCT, when combined with other markers, is useful biomarker for PJI, particularly in patients with inflammatory joint disease. Busch et al [7] reported that PCT is specific but less sensitive marker for PJI, however, they concluded that PCT is not a reliable marker to differentiate between PJI and aseptic loosening. They did not recommend single use of PCT to rule out PJI. Similarly, Worthington et al [18] reported that PCT could not differentiate septic and aseptic causes of THA loosening. All patients with aseptic loosening and 94 % with septic loosening had a PCT level < 0.5 ng/ml only one case of septic loosening had levels >2 ng/ml. Ettinger et al [20] concluded that PCT cannot be used to distinguish aseptic loosening from low grade infection. Sun et al [14] reported that PCT is not a reliable marker for PJI. They compared PCT with ESR, CRP, fibrinogen, and platelets. PCT had the lowest diagnostic accuracy. Adding PCT to other markers as CRP improved the diagnostic accuracy. Similarly, Yuan et al [9] demonstrated that PCT did not offer advantage over CRP for diagnosis of PJI.

Several metanalyses confirmed the inferior performance of PCT as a marker for PJI. Sun et al [24], in a recent metanalysis, confirmed the poor diagnostic accuracy of PCT recommending against its use for ruling in/out PJI. Yoon et al [25], in their metanalysis, did not recommend the use of PCT to rule out PJI. Moreover, Xie et al [26] reported a low sensitivity for PCT which limits the clinical application of PCT.

There are many explanations for such inferior diagnostic performance of PCT. PCT is released in response to bacteremia which is not essentially present in PJI [27]. Infection with slow growing organisms does not elicit much of physiological response and release of PCT [7]. Transient bacteremia, even in healthy individuals, can induce PCT release [28]. Moreover, renal disease can cause PCT retention resulting in higher PCT levels than in normal individuals [29, 30].

Conclusions: The evaluation of available litearure revelaed that serum procalcitonin has little to no role in diagnosis of PJI.

Sensitivity (95% CI) Bottner et al 2007 0.33 (0.15 - 0.57)Busch et al 2020 0.13 (0.03 - 0.34)Chu et al 2020 0.44 (0.20 - 0.70)Glehr et al 2013 0.48 (0.35 - 0.61)Sa-ngasoongsong et al 2018 0.40 (0.19 - 0.64)Randu et al 2014 0.13 (0.05 - 0.25)Sun et al 2023 0.20 (0.09 - 0.35)Tahta et al 2018 0.82 (0.57 - 0.96)Worthington et al 2016 0.06 (0.00 - 0.30)Yildrim et al 2017 0.80 (0.65 - 0.90)Yuan et al 2014 0.80 (0.59 - 0.93)Ettinger et al 2015 0.90 (0.77 - 0.97)Klim et al 2020 0.40 (0.29 - 0.51)Yin et al 2021 0.67 (0.38 - 0.88)Pooled Sensitivity = 0.47 (0.42 to 0.51) Chi-square = 147.15; df = 13 (p = 0.0000) 1 Inconsistency (I-square) = 91.2 % 0 0.2 0.4 0.6 8.0 Sensitivity

Figure (1); pooled Sensitivity.

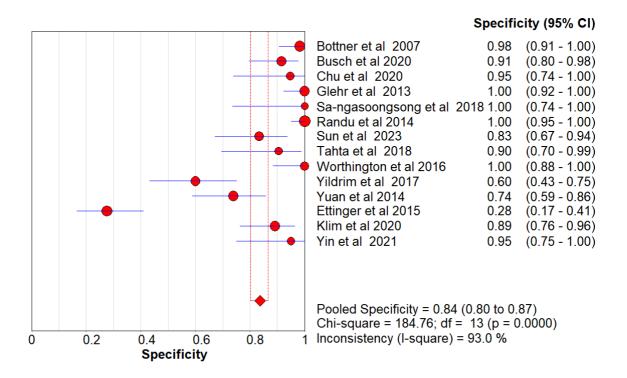


Figure (2); pooled Specificity.

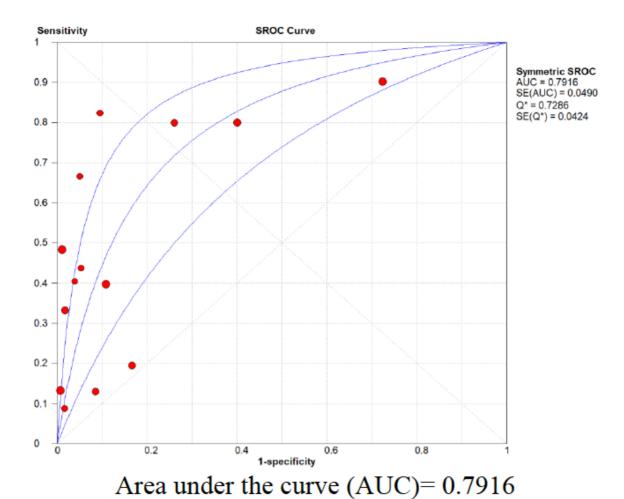


Figure (3); pooled AUC.

References

- 1. Ferriere F (2000) [Procalcitonin, a new marker for bacterial infections]. Ann Biol Clin (Paris) 58:49-59
- 2. Prucha M, Herold I, Zazula R, Dubska L, Kavka B, Dostal M (2003) [Comparison of procalcitonin, interleukin-6 and C-reactive protein in the differential diagnosis of patients with sepsis syndrome in intensive care units]. Vnitr Lek 49:541-547
- 3. Sanzen L, Sundberg M (1997) Periprosthetic low-grade hip infections. Erythrocyte sedimentation rate and C-reactive protein in 23 cases. Acta Orthop Scand 68:461-465. DOI 10.3109/17453679708996263
- 4. Bo M, Raspo S, Morra F, Isaia G, Cassader M, Fabris F, Poli L (2004) Body fat and C-reactive protein levels in healthy non-obese men. Nutr Metab Cardiovasc Dis 14:66-72. DOI 10.1016/s0939-4753(04)80012-7
- 5. Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J (2004) Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 39:206-217. DOI 10.1086/421997
- 6. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM, Group Q- (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529-536. DOI 10.7326/0003-4819-155-8-201110180-00009

- 7. Busch A, Jager M, Engler H, Haversath M, Bielefeld C, Landgraeber S, Wegner A (2020) Is Procalcitonin (PCT) a reliable biomarker for preoperative diagnosing of low grade periprosthetic joint infection? A prospective study. BMC Musculoskelet Disord 21:257. DOI 10.1186/s12891-020-03266-6
- 8. Sa-Ngasoongsong P, Wongsak S, Jarungvittayakon C, Limsamutpetch K, Channoom T, Kawinwonggowit V (2018) Comparison of Synovial Fluid and Serum Procalcitonin for Diagnosis of Periprosthetic Joint Infection: A Pilot Study in 32 Patients. Biomed Res Int 2018:8351308. DOI 10.1155/2018/8351308
- 9. Yuan K, Li WD, Qiang Y, Cui ZM (2015) Comparison of procalcitonin and C-reactive protein for the diagnosis of periprosthetic joint infection before revision total hip arthroplasty. Surg Infect (Larchmt) 16:146-150. DOI 10.1089/sur.2014.034
- 10. Tahta M, Simsek ME, Isik C, Akkaya M, Gursoy S, Bozkurt M (2019) Does inflammatory joint diseases affect the accuracy of infection biomarkers in patients with periprosthetic joint infections? A prospective comparative reliability study. J Orthop Sci 24:286-289. DOI 10.1016/j.jos.2018.08.022
- 11. Klim SM, Amerstorfer F, Glehr G, Hauer G, Smolle MA, Leitner L, Leithner A, Glehr M (2020) Combined serum biomarker analysis shows no benefit in the diagnosis of periprosthetic joint infection. Int Orthop 44:2515-2520. DOI 10.1007/s00264-020-04731-6
- 12. Bottner F, Wegner A, Winkelmann W, Becker K, Erren M, Gotze C (2007) Interleukin-6, procalcitonin and TNF-alpha: markers of peri-prosthetic infection following total joint replacement. J Bone Joint Surg Br 89:94-99. DOI 10.1302/0301-620X.89B1.17485
- 13. Glehr M, Friesenbichler J, Hofmann G, Bernhardt GA, Zacherl M, Avian A, Windhager R, Leithner A (2013) Novel biomarkers to detect infection in revision hip and knee arthroplasties. Clin Orthop Relat Res 471:2621-2628. DOI 10.1007/s11999-013-2998-3
- 14. Sun X, Zhang H, Liu Y, Lai Z, Zeng Y (2023) Serum procalcitonin has no significance in the diagnosis of periprosthesis joint infection before total hip and knee replacement. Front Surg 10:1216103. DOI 10.3389/fsurg.2023.1216103
- 15. Yildirim K, Misir A, Kizkapan TB, Ozcamdalli M, Duygulu F (2017) Neopterin, Interleukin-6, Procalcitonin, C-Reactive Protein And PET-CT Staining As Markers In Infected Total Knee Prosthesis, A Retrospective Analysis. Acta Orthop Belg 83:624-630 16. Yin H, Xu D, Wang D (2021) Diagnostic value of next-generation sequencing to detect periprosthetic joint infection. BMC Musculoskelet Disord 22:252. DOI 10.1186/s12891-021-04116-9
- 17. Randau TM, Friedrich MJ, Wimmer MD, Reichert B, Kuberra D, Stoffel-Wagner B, Limmer A, Wirtz DC, Gravius S (2014) Interleukin-6 in serum and in synovial fluid enhances the differentiation between periprosthetic joint infection and aseptic loosening. PLoS One 9:e89045. DOI 10.1371/journal.pone.0089045
- 18. Worthington T, Dunlop D, Casey A, Lambert R, Luscombe J, Elliott T (2010) Serum procalcitonin, interleukin-6, soluble intercellular adhesin molecule-1 and IgG to short-chain exocellular lipoteichoic acid as predictors of infection in total joint prosthesis revision. Br J Biomed Sci 67:71-76. DOI 10.1080/09674845.2010.11730294
- 19. Chu L, Ren YL, Yang JS, Yang J, Zhou H, Jiang HT, Shi L, Hao DJ, Deng ZL (2020) The combinations of multiple factors to improve the diagnostic sensitivity and specificity after artificial joint infection. J Orthop Surg Res 15:161. DOI 10.1186/s13018-020-01669-8 20. Ettinger M, Calliess T, Kielstein JT, Sibai J, Bruckner T, Lichtinghagen R, Windhagen H, Lukasz A (2015) Circulating biomarkers for discrimination between aseptic joint failure, low-grade infection, and high-grade septic failure. Clin Infect Dis 61:332-341. DOI 10.1093/cid/civ286
- 21. Parvizi J, Zmistowski B, Berbari EF, Bauer TW, Springer BD, Della Valle CJ, Garvin KL, Mont MA, Wongworawat MD, Zalavras CG (2011) New definition for periprosthetic

- joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res 469:2992-2994. DOI 10.1007/s11999-011-2102-9
- 22. Parvizi J, Gehrke T, International Consensus Group on Periprosthetic Joint I (2014) Definition of periprosthetic joint infection. J Arthroplasty 29:1331. DOI 10.1016/j.arth.2014.03.009
- 23. Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C, Chen AF, Shohat N (2018) The 2018 Definition of Periprosthetic Hip and Knee Infection: An Evidence-Based and Validated Criteria. J Arthroplasty 33:1309-1314 e1302. DOI 10.1016/j.arth.2018.02.078
- 24. Sun X, Li Y, Lv Y, Liu Y, Lai Z, Zeng Y, Zhang H (2024) Diagnostic value of procalcitonin in patients with periprosthetic joint infection: a diagnostic meta-analysis. Front Surg 11:1211325. DOI 10.3389/fsurg.2024.1211325
- 25. Yoon JR, Yang SH, Shin YS (2018) Diagnostic accuracy of interleukin-6 and procalcitonin in patients with periprosthetic joint infection: a systematic review and meta-analysis. Int Orthop 42:1213-1226. DOI 10.1007/s00264-017-3744-3
- 26. Xie K, Qu X, Yan M (2017) Procalcitonin and alpha-Defensin for Diagnosis of Periprosthetic Joint Infections. J Arthroplasty 32:1387-1394. DOI 10.1016/j.arth.2016.10.001 27. Klement MR, Siddiqi A, Rock JM, Chen AF, Bolognesi MP, Seyler TM (2018) Positive Blood Cultures in Periprosthetic Joint Infection Decrease Rate of Treatment Success. J Arthroplasty 33:200-204 e201. DOI 10.1016/j.arth.2017.08.034
- 28. Lucas VS, Gafan G, Dewhurst S, Roberts GJ (2008) Prevalence, intensity and nature of bacteraemia after toothbrushing. J Dent 36:481-487. DOI 10.1016/j.jdent.2008.03.005 29. Herget-Rosenthal S, Klein T, Marggraf G, Hirsch T, Jakob HG, Philipp T, Kribben A (2005) Modulation and source of procalcitonin in reduced renal function and renal replacement therapy. Scand J Immunol 61:180-186. DOI 10.1111/j.0300-9475.2005.01545.x 30. Yunus I, Fasih A, Wang Y (2018) The use of procalcitonin in the determination of severity of sepsis, patient outcomes and infection characteristics. PLoS One 13:e0206527. DOI 10.1371/journal.pone.0206527