G62: What is the optimal management of patients with persistent wound drainage who

have undergone recent major orthopedic procedures?

Seyed Mohammad Javad Mortazavi, Carlos Bracho, Mohammad Poursalehian, John H Cooper,

Marti Bernaus, AbdulRahman A Babaqi, James Purtill, Mehmet Kursat Yilmaz, Julio Cesar

Palacio, Mahdi Sahebi, Victor M Illizaliturri`

**Response/Recommendation:** Persistent wound drainage (PWD) after major orthopedic surgery

requires a systematic approach. First, rule out infection by checking for local and systemic signs

such as erythema, purulence, and fever. If infection is not suspected, apply non-operative

measures such as local wound care, risk factors, minimizing motion at the surgical site, and

adjusting VTE prophylaxis. If drainage continues beyond seven days despite non-operative

management, investigate thoroughly for infection and consider surgical intervention, including

irrigation and debridement.

**Level of Evidence**: Moderate

**Delegate Vote:** 

**Rationale:** 

**Definition of Persistent Wound Drainage (PWD)** 

Persistent Wound Drainage (PWD) refers to continued fluid leakage (serous, serosanguinous, or

purulent) from the surgical wound beyond the expected early postoperative period (1-8). Most

wound healing disturbance leading to short drainage duration is non-infectious (4, 9). Surgical

disruption of the superficial capillaries may cause minor, temporary serous or serosanguinous

post operative wound drainage. If drainage persists, work-up for infection is indicated (9).

Delayed wound healing may allow pathogens to penetrate deeper tissues, resulting in retrograde

infection (5, 10). Studies suggest that the risk of infection increases substantially when drainage

lasts more than 5 days (4, 11). There is no comprehensive definition for the duration and amount

of PWD. However, studies have reported PWD as lasting from 2 to 9 days post-op (4, 12-14). In

2013 and 2018, the International Consensus Meeting (ICM) on periprosthetic joint infection

defined PWD as more than 2×2 cm of drainage on the wound dressing beyond 72 hours

following the initial surgery (15, 16). However, it is essential to recognize that different types of dressings influence both the volume and duration of drainage, which adds complexity to this matter (17).

### **Differentiating Infectious vs. Non-Infectious Wound Drainage**

PWD can be categorized into non-infectious and infectious types. Non-infectious drainage commonly appears early in the postoperative period, though in cases involving certain sealed antibacterial dressings, clinicians may only recognize it after dressing removal. This fluid is often serous or serosanguinous in nature, with no appreciable odor or signs of local tissue destruction. It typically resolves with conservative management once anticoagulation and other modifiable risk factors are addressed (18). Moreover, mild elevations in inflammatory markers are common and may reflect normal postoperative physiology rather than infection (19).

Infectious wound drainage necessitates prompt intervention (6). Systemic and local signs of infection may be present. Systemic signs of infection include fever, chills, and tachycardia. Local signs include erythema, induration and warmth of the surgical site as well as purulent drainage, or the presence of a sinus tract (6, 20). Fever is considered physiological in the first 3 to 5 days after the initial surgery (21-23). Nevertheless, temperatures exceeding 39°C, especially if persistent for multiple days or occurring more than 3-5 days post-surgery, warrant further investigation (4, 24, 25). An infectious complication of PWD should be suspected if CRP levels rise after 72 hours post-TJA or remain elevated for more than 7 days after TJA (5, 26). The ESR and WBC levels are less appropriate for diagnosing infections in cases of PWD (5, 26, 27). Currently, there are no universally established criteria to differentiate infectious PWD from non-infectious PWD.

### **Non-Operative Management of Persistent Wound Drainage**

When no clinical or laboratory indicators suggest infection, conservative strategies should be considered.

Activity Modification and Immobilization

Excessive motion can aggravate drainage, especially early in the postoperative course (28, 29). Restricting joint movement through bracing, discontinuing continuous passive motion, or

temporarily pausing physical therapy can be beneficial. These measures are typically short-term interventions aimed at promoting stable wound healing (30, 31).

### Wound Care and Dressings

Wound care plays a central role in managing PWD. Absorbent dressings and pressure bandages are often the first line of management (32, 33). If drainage continues, negative pressure wound therapy (NPWT) can be considered. NPWT has been shown to reduce seromas, hematomas, dehiscence, and infection. NPWT often achieves a dry wound within 24 hours (34), and has been shown to lead to cessation of PWD in the majority of patients (35). Although prophylactic NPWT shows benefit in preventing seroma and hematoma formation, widespread routine use is generally not cost-effective (36). However, it may be considered prophylactically in patients at higher risk for PWD (37).

# Anticoagulation Management

Anticoagulation can exacerbate or prolong drainage by contributing to persistent oozing from the surgical site. A short-term cessation of VTE prophylaxis may be justified based on the patient's overall risk and the specific anticoagulant in use (38). Alternatively, switching to an agent with a lower risk of PWD such as aspirin can be an effective strategy if clinically appropriate (4, 38-41). These adjustments should be individualized and closely monitored to balance the benefits of preventing thrombotic events with the risk of complications from prolonged wound drainage.

### No Prophylactic antibiotics

The routine use of prophylactic antibiotics has not been shown to reduce the incidence or severity of PWD, nor does it lower the rate of wound infections in this specific scenario (42, 43). As a result, current recommendations are against the use of prophylactic antibiotics in the absence of clear signs of infection.

# Risk Factor Optimization

Focusing on modifiable risk factors can significantly influence wound outcomes (Table 1). Good glycemic control in diabetic patients, smoking cessation, and adequate nutritional support—especially in malnourished patients—are critical for promoting wound healing (5, 6, 8, 44-48).

Surgeons should also inspect the incision site, particularly at both ends, to ensure that the closure is adequate; if not, reclosure can prevent continued drainage (49).

### **Monitoring**

Finally, ongoing evaluation of wound drainage is essential. Daily monitoring will help determine if drainage is diminishing, and tracking CRP levels may help detect any developing infection or persistent inflammatory process (19). If these measures do not result in a reduction of drainage within a reasonable time frame, infection must be considered.

### **Operative Management for Infectious Wound Drainage**

If PWD does not improve after several days of conservative management, or if the drainage volume increases, local or systemic signs of infection develop, CRP levels rise, or drainage persists beyond seven days without an identifiable cause, operative management must be strongly considered (12).

Surgical management generally begins with the aspiration of any hematoma; in cases involving TJA, joint aspiration should be performed as well (33). The wound is then explored, with multiple intraoperative samples taken for culture. Thorough debridement of any necrotic or infected tissue is essential. Extensive irrigation is recommended to help clear the surgical site of probable infectious material. In cases of TJA, if the infection involves the joint itself a DAIR procedure along with modular components exchange is recommended (8, 33, 50, 51). After surgery, patients should be started on empiric antibiotic therapy, which is subsequently adjusted once culture results are available (33, 50, 51). In many cases, an extended course of antibiotics is advised to ensure complete resolution of the infection (52).

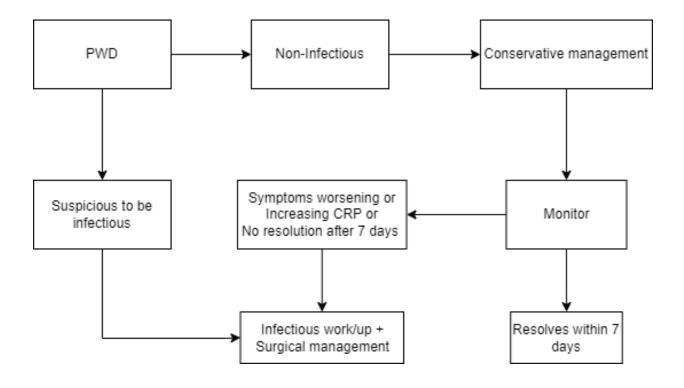
# Limitations

The literature on PWD is limited and mainly focuses on total joint arthroplasty, with varying findings. PWD is multifactorial and patient-specific, making a universal management protocol challenging. The duration for non-infected PWD to consider infected or at risk of infection varies in the literature, and there is no universally accepted definition of infected PWD. High-quality research is needed to develop clear criteria for identifying patients who would benefit most from surgical intervention.

## **References:**

- 1. Wagenaar FC, Löwik CAM, Stevens M, Bulstra SK, Pronk Y, van den Akker-Scheek I, et al. Managing persistent wound leakage after total knee and hip arthroplasty. Results of a nationwide survey among Dutch orthopaedic surgeons. J Bone Jt Infect. 2017;2(4):202-7.
- 2. Waly F, Alzahrani MM, Abduljabbar FH, Landry T, Ouellet J, Moran K, Dettori JR. The Outcome of Using Closed Suction Wound Drains in Patients Undergoing Lumbar Spine Surgery: A Systematic Review. Global Spine J. 2015;5(6):479-85.
- 3. Zhang Z, Wang Z, Zhang Y, Qiu X, Chen Y. Risk factors for increased postoperative drainage of calcaneal fractures after open reduction and internal fixation: An observational study. Medicine (Baltimore). 2018;97(32):e11818.
- 4. Patel VP, Walsh M, Sehgal B, Preston C, DeWal H, Di Cesare PE. Factors associated with prolonged wound drainage after primary total hip and knee arthroplasty. J Bone Joint Surg Am. 2007;89(1):33-8.
- 5. Almeida RP, Mokete L, Sikhauli N, Sekeitto AR, Pietrzak J. The draining surgical wound post total hip and knee arthroplasty: what are my options? A narrative review. EFORT Open Rev. 2021;6(10):872-80.
- 6. Wagenaar F, Löwik CAM, Zahar A, Jutte PC, Gehrke T, Parvizi J. Persistent Wound Drainage After Total Joint Arthroplasty: A Narrative Review. JOURNAL OF ARTHROPLASTY. 2019;34(1):175-82.
- 7. Parchi PD, Evangelisti G, Andreani L, Girardi F, Darren L, Sama A, Lisanti M. Postoperative Spine Infections. Orthop Rev (Pavia). 2015;7(3):5900.
- 8. Illingworth KD, Mihalko WM, Parvizi J, Sculco T, McArthur B, el Bitar Y, Saleh KJ. How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty: a multicenter approach: AAOS exhibit selection. J Bone Joint Surg Am. 2013;95(8):e50.
- 9. Al-Houraibi RK, Aalirezaie A, Adib F, Anoushiravani A, Bhashyam A, Binlaksar R, et al. General Assembly, Prevention, Wound Management: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty. 2019;34(2s):S157-s68.
- 10. Janis JE, Harrison B. Wound Healing: Part I. Basic Science. Plast Reconstr Surg. 2016;138(3 Suppl):9s-17s.
- 11. Saleh K, Olson M, Resig S, Bershadsky B, Kuskowski M, Gioe T, et al. Predictors of wound infection in hip and knee joint replacement: results from a 20 year surveillance program. J Orthop Res. 2002;20(3):506-15.
- 12. Jaberi FM, Parvizi J, Haytmanek CT, Joshi A, Purtill J. Procrastination of wound drainage and malnutrition affect the outcome of joint arthroplasty. Clin Orthop Relat Res. 2008;466(6):1368-71.
- 13. Hansen E, Durinka JB, Costanzo JA, Austin MS, Deirmengian GK. Negative Pressure Wound Therapy Is Associated With Resolution of Incisional Drainage in Most Wounds After Hip Arthroplasty. Clinical Orthopaedics and Related Research®. 2013;471(10).
- 14. Butt U, Ahmad R, Aspros D, Bannister GC. Factors affecting wound ooze in total knee replacement. Ann R Coll Surg Engl. 2011;93(1):54-6.
- 15. Ghanem E, Heppert V, Spangehl M, Abraham J, Azzam K, Barnes L, et al. Wound management. J Orthop Res. 2014;32 Suppl 1:S108-19.
- 16. Parvizi J, Gehrke T, Chen AF. Proceedings of the International Consensus on Periprosthetic Joint Infection. Bone Joint J. 2013;95-b(11):1450-2.
- 17. Sood A, Granick MS, Tomaselli NL. Wound Dressings and Comparative Effectiveness Data. Adv Wound Care (New Rochelle). 2014;3(8):511-29.

- 18. Rudy HL, Cho W, Oster BA, Morris MT, Schulz J. Treatment of Isolated Serosanguinous Incision Drainage after Thoracolumbar Surgery: Is Surgical Management Always Necessary? Surg Infect (Larchmt). 2020;21(3):227-30.
- 19. Shetty S, Ethiraj P, Shanthappa AH. C-reactive Protein Is a Diagnostic Tool for Postoperative Infection in Orthopaedics. Cureus. 2022;14(2):e22270.
- 20. Zmistowski B, Della Valle C, Bauer TW, Malizos KN, Alavi A, Bedair H, et al. Diagnosis of periprosthetic joint infection. J Arthroplasty. 2014;29(2 Suppl):77-83.
- 21. Anderson JT, Osland JD. Blood cultures for evaluation of fever after total joint arthroplasty. Am J Orthop (Belle Mead NJ). 2009;38(8):E134-6.
- 22. Ward DT, Hansen EN, Takemoto SK, Bozic KJ. Cost and effectiveness of postoperative fever diagnostic evaluation in total joint arthroplasty patients. J Arthroplasty. 2010;25(6 Suppl):43-8.
- 23. Athanassious C, Samad A, Avery A, Cohen J, Chalnick D. Evaluation of fever in the immediate postoperative period in patients who underwent total joint arthroplasty. J Arthroplasty. 2011;26(8):1404-8.
- 24. Ghosh S, Charity RM, Haidar SG, Singh BK. Pyrexia following total knee replacement. Knee. 2006;13(4):324-7.
- 25. Shahi A, Parvizi J. Prevention of Periprosthetic Joint Infection. Arch Bone Jt Surg. 2015;3(2):72-81.
- 26. Yi PH, Cross MB, Moric M, Sporer SM, Berger RA, Della Valle CJ. The 2013 Frank Stinchfield Award: Diagnosis of infection in the early postoperative period after total hip arthroplasty. Clin Orthop Relat Res. 2014;472(2):424-9.
- 27. Park KK, Kim TK, Chang CB, Yoon SW, Park KU. Normative Temporal Values of CRP and ESR in Unilateral and Staged Bilateral TKA. Clin Orthop Relat Res. 2008;466(1):179-88.
- 28. Pope RO, Corcoran S, McCaul K, Howie DW. Continuous passive motion after primary total knee arthroplasty. Does it offer any benefits? J Bone Joint Surg Br. 1997;79(6):914-7.
- 29. Kumar PJ, McPherson EJ, Dorr LD, Wan Z, Baldwin K. Rehabilitation after total knee arthroplasty: a comparison of 2 rehabilitation techniques. Clin Orthop Relat Res. 1996(331):93-101.
- 30. Shahi A, Boe R, Bullock M, Hoedt C, Fayyad A, Miller L, Oliashirazi A. The risk factors and an evidence-based protocol for the management of persistent wound drainage after total hip and knee arthroplasty. Arthroplast Today. 2019;5(3):329-33.
- 31. Reich MS, Ezzet KA. A nonsurgical protocol for management of postarthroplasty wound drainage. Arthroplast Today. 2018;4(1):71-3.
- 32. Löwik CAM, Wagenaar FC, van der Weegen W, Poolman RW, Nelissen R, Bulstra SK, et al. LEAK study: design of a nationwide randomised controlled trial to find the best way to treat wound leakage after primary hip and knee arthroplasty. BMJ Open. 2017;7(12):e018673.
- 33. Scuderi GR. Avoiding Postoperative Wound Complications in Total Joint Arthroplasty. J Arthroplasty. 2018;33(10):3109-12.
- 34. Hyldig N, Birke-Sorensen H, Kruse M, Vinter C, Joergensen JS, Sorensen JA, et al. Meta-analysis of negative-pressure wound therapy for closed surgical incisions. Br J Surg. 2016;103(5):477-86.
- 35. Hansen E, Durinka JB, Costanzo JA, Austin MS, Deirmengian GK. Negative pressure wound therapy is associated with resolution of incisional drainage in most wounds after hip arthroplasty. Clin Orthop Relat Res. 2013;471(10):3230-6.
- 36. Whitty JA, Wagner AP, Kang E, Ellwood D, Chaboyer W, Kumar S, et al. Cost-effectiveness of closed incision negative pressure wound therapy in preventing surgical site infection among obese women giving birth by caesarean section: An economic evaluation (DRESSING trial). Aust N Z J Obstet Gynaecol. 2023;63(5):673-80.
- 37. Cooper HJ, Silverman RP, Collinsworth A, Bongards C, Griffin L. Closed Incision Negative Pressure Therapy vs Standard of Care Over Closed Knee and Hip Arthroplasty Surgical Incisions in the Reduction


of Surgical Site Complications: A Systematic Review and Meta-analysis of Comparative Studies. Arthroplast Today. 2023;21:101120.

- 38. Jones CW, Spasojevic S, Goh G, Joseph Z, Wood DJ, Yates PJ. Wound Discharge After Pharmacological Thromboprophylaxis in Lower Limb Arthroplasty. J Arthroplasty. 2018;33(1):224-9.
- 39. Bloch BV, Patel V, Best AJ. Thromboprophylaxis with dabigatran leads to an increased incidence of wound leakage and an increased length of stay after total joint replacement. Bone Joint J. 2014;96-b(1):122-6.
- 40. Sidhu VS, Naylor JM, Adie S, Lieu D, Walker R, Horsley M, et al. Is Enoxaparin Associated With a Higher Risk of Persistent Wound Drainage Than Aspirin? A Secondary Analysis of Data From the CRISTAL Randomized Trial. Clin Orthop Relat Res. 2023;481(7):1351-9.
- 41. Singh V, Shahi A, Saleh U, Tarabichi S, Oliashirazi A. Persistent Wound Drainage among Total Joint Arthroplasty Patients Receiving Aspirin vs Coumadin. J Arthroplasty. 2020;35(12):3743-6.
- 42. WHO Guidelines Approved by the Guidelines Review Committee. Global Guidelines for the Prevention of Surgical Site Infection. Geneva: World Health Organization

Copyright © World Health Organization 2016.; 2016.

- 43. Holle J, Finger T, Lugonja J, Schmidt F, Schaumann A, Gratopp A, et al. The Influence of Perioperative Antibiotic Prophylaxis on Wound Infection and on the Colonization of Wound Drains in Patients After Correction of Craniosynostosis. Front Pediatr. 2021;9:720074.
- 44. Everhart JS, Andridge RR, Scharschmidt TJ, Mayerson JL, Glassman AH, Lemeshow S. Development and Validation of a Preoperative Surgical Site Infection Risk Score for Primary or Revision Knee and Hip Arthroplasty. J Bone Joint Surg Am. 2016;98(18):1522-32.
- 45. Lopez LF, Reaven PD, Harman SM. Review: The relationship of hemoglobin A1c to postoperative surgical risk with an emphasis on joint replacement surgery. J Diabetes Complications. 2017;31(12):1710-8.
- 46. Debbi EM, Rajaee SS, Spitzer AI, Paiement GD. Smoking and Total Hip Arthroplasty: Increased Inpatient Complications, Costs, and Length of Stay. J Arthroplasty. 2019;34(8):1736-9.
- 47. Bedard NA, DeMik DE, Owens JM, Glass NA, DeBerg J, Callaghan JJ. Tobacco Use and Risk of Wound Complications and Periprosthetic Joint Infection: A Systematic Review and Meta-Analysis of Primary Total Joint Arthroplasty Procedures. J Arthroplasty. 2019;34(2):385-96.e4.
- 48. Gu A, Malahias MA, Strigelli V, Nocon AA, Sculco TP, Sculco PK. Preoperative Malnutrition Negatively Correlates With Postoperative Wound Complications and Infection After Total Joint Arthroplasty: A Systematic Review and Meta-Analysis. J Arthroplasty. 2019;34(5):1013-24.
- 49. Queen D, Harding K. World Union of Wound Healing Societies Meeting, 2020. Int Wound J. 2020;17(2):241.
- 50. Wagenaar FBM, Löwik CAM, Zahar A, Jutte PC, Gehrke T, Parvizi J. Persistent Wound Drainage After Total Joint Arthroplasty: A Narrative Review. J Arthroplasty. 2019;34(1):175-82.
- 51. Barros LH, Barbosa TA, Esteves J, Abreu M, Soares D, Sousa R. Early Debridement, antibiotics and implant retention (DAIR) in patients with suspected acute infection after hip or knee arthroplasty safe, effective and without negative functional impact. J Bone Jt Infect. 2019;4(6):300-5.
- 52. Qasim SN, Swann A, Ashford R. The DAIR (debridement, antibiotics and implant retention) procedure for infected total knee replacement a literature review. Sicot j. 2017;3:2.

**Figures** 

