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Response/Recommendation:

Yes. Based on the limited studies available, iodine-coated orthopaedic implants appear to be
effective in reducing the risk of surgical site infection (SSI)/periprosthetic joint infection (PJI)
after arthroplasty.

Level of Evidence: Limited

Delegate Vote:

Rationale:

Periprosthetic joint infection (PJI) most commonly occurs via the development of a biofilm and
bacterial adherence to implant surfaces. A biofilm is the formation of pathogens and microbial
cells that form strong interactions with an extracellular matrix, replete with polysaccharides,
biopolymers, proteins, teichoic acids, lipids, and extracellular DNA, to survive and propagate. In
order to attach to arthroplasty components, biofilm undergoes a four-stage process: cellular
adhesion, cellular aggregation, biofilm maturation, and cellular detachment.

In the first stage of biofilm formation, bacteria attaches to the biomaterial surface in a reversible
manner.} It is reversible due to the characteristics of the external environment, including pH,
composition, and temperature, among others.*® If successful, these adhesions can propagate to
form microcolonies.®” Once microcolonies have been established, the bacterial colony unit
attracts more nutrients and spreads toward the periphery of the biomaterial device.2! As the
colony gains more nutrients and spreads further, the infection naturally worsens until it
experiences environmental stresses that prevent further growth and propagation.

Several decades ago, Anthony Gristina developed the ‘race for the surface’ hypothesis which
describes how the colonization on the surface of a prosthetic device or implant within the human
body is a ‘race’ between microbes and host cells.*? Whichever group of cells inhabits the implant
surface first is likely to remain there in perpetuity. This theory helps us understand not only
which environments and characteristics are likely to allow for biofilm formation, but also helps
us to understand ways in which to thwart the colonization of pathogens on the surface of
prosthetic components.

The type of implant surface can substantially impact the rate and severity with which a PJI can
occur. The type of implant surface is divided into two broad categories — antibacterial coatings
and modification of the surface itself. Within antibacterial coatings, there are both active and
passive coatings. Active coatings release antibacterial agents to destroy bacteria whereas passive
coatings prevent bacteria from attaching or propagating on the biomaterial surface. Modification



of the surface itself is rarely used as it can impact the ability of the prosthesis to integrate within
host tissues.

Active coatings on arthroplasty components are geared toward killing bacteria and other
microorganisms that can form biofilms.'® Active coatings can further be subdivided into contact-
based and release-based mechanisms.'* Contact-based active coatings create adhesions to
surfaces of specific antibacterial agents which aids in the killing of those microorganisms. These
materials are often synthetic such as quaternary ammonium compounds which exert their
bactericidal capabilities via a charge imbalance.’® Specifically, this means that the positively
charged calcium and magnesium compounds preferentially bind to the negatively charged
phospholipid membrane of the bacteria on the outer surface of the biofilm. This covalent bond
disrupts the cellular membrane of the microorganism and leads to bacterial cell death. Natural
quaternary ammonium compounds are also available such as antimicrobial peptides (AMP) and
AME bactericidal agents.'*?° The AMP and AMEs are groups of peptides that can initiate a
series of chemical reactions leading to bacterial cell death. Onaizi et al. evaluated the use of
AMPs for antibacterial coatings of medical implants and demonstrated that the use of AMPs has
a broad range of antimicrobial killing potential.?

Release-based mechanisms are described as systems with carriers for bactericidal agents that can
be eluted over time in a controlled manner. These coatings can be created with hydrogels,
ceramics, or polyelectrolyte multilayers. A new technology has incorporated silver cations and
anions with highly oxidized iodine.?? Another new technology incorporates low molecular
weight therapeutic agents composed of a polymeric matrix that can store multiple antimicrobial
drugs.?® Furthermore, antimicrobial agents, such as antibiotics, can be ‘wrapped’ in release-based
mechanisms for scheduled elution and delivery to a biofilm. For example, an antibacterial
device, TYRX, is an absorbable antibacterial wrap that can deliver antibiotics to a site of biofilm
formation. In a study of 500 high-risk cardiac patients, this wrap was able to deliver minocycline
and rifampin and reduce infection by up to 90% compared to a control group.?*

Passive coatings do not release bactericidal agents to the biofilm, but rather prevent bacterial
adhesion to prosthetic devices and components. An example of passive coating can be found in
ultraviolet irradiation of titanium dioxide which decreases bacterial adhesion without impacting
any effect on osseointegration.?®> Polymer coatings can also be applied as a coating to
orthopaedic implants to inhibit bacterial adhesion. For example, hydrophilic polymethacrylic
acid, polyethylene oxide, and protein-resistant polyethylene glycol all have shown the ability to
reduce bacterial adhesion in biofilm formation.?®?” Other organic compounds, such as albumin?®,
hydrogels?®=L, and silicone-nitride ceramics®223, have shown efficacy in the literature in
reducing rates of postoperative infection in orthopaedic procedures.

lodine-coated implants have recently gained popularity as a way to reduce the rates of PJI and
reoperation following arthroplasty procedures. lodine is abundant in the thyroid and one of the
heaviest elements. It is also commonly paired with povidone to form povidone-iodine which is a
widely used antiseptic in operating rooms worldwide. lodine generally does not incur any
antibacterial resistance, which makes it an appealing antiseptic and coating option for implants.
lodine-coated prostheses generally consist of a povidone-iodine electrolyte as the coating
combined with an anodic oxide film.



lodine is generally treated with Ti-6Al-4 V titanium implants with success in reducing rates of
infection. For example, Inoue et al. demonstrated in an in vivo analysis that the mean viable
bacterial activity was significantly lower on iodine-coated titanium surfaces versus control
surfaces. Another study validated the use of iodine-coated external fixation pins in rabbit
models which found that pins coated with iodine were more effective at reducing signs of
infection and inflammation of the pins®. Additionally, this study found that the
osteoconductivity of the pins was enhanced in the presence of an iodine coat. Miwa et al. also
evaluated the incidence of infection following the use of iodine coated knee arthroplasty
implants for malignant bone tumor resection.® Among 302 patients, they found that 33 (10.9%)
patients developed a SSI. They also concluded that the use of an iodine coated implant was
associated with a reduced risk of PJI compared to non-coated implants (odds ratio: 0.29; p =
0.039).

There are several prospective cohort studies that have analyzed the rate of infection following the
use of iodine coated prostheses compared to non-coated implants. A prospective clinical study on
the use of iodine-coated implants found that the infection rate for these implants was low, even
for immunocompromised hosts, which made the postoperative infection less severe and more
manageable.3” Another study analyzed the impact iodine coated mega-prostheses may have in
the prevention and treatment of PJI.3” Between July 2008 and May 2013, 47 patients with
malignant bone tumors or septic arthritis with osteomyelitis were treated with iodine coated
mega-prostheses. The authors found that, after 30.1 months follow-up on average, only one
patient out of 47 had a SSI which was treated with antibiotics alone. Moreover, thyroid tests
concluded that there were no abnormalities associated with thyroid function in any patient.
Finally, Kabata et al. performed a clinical trial assessing how the use of iodine-supported
implants impact the infection rates following complex primary, revision, or infected
arthroplasties.® After 33 months, none of the 30 joints among the 28 patients were found to have
clinical evidence of an infection and thyroid function remained stable. Moreover, no evidence of
loosening or hardware complications were detected within the follow-up period. These data may
suggest that iodine-coated implants are a reasonable option to prevent and treat cases of infected
arthroplasty.

As previously mentioned, cytotoxicity is generally a concern with the use of these coated
prosthetic components — if they are harmful to the adhesion and propagation of bacteria and
biofilm, they may also be harmful to host cells and osseointegration. Studies like Ueoka et al., in
which they evaluated the antibacterial activity of iodine-coated titanium implants in a rat model
and demonstrated the reduction in bacterial cell viability and survival, still leave unanswered
questions regarding the toxicity and osseointegration of such implants.3>*° Copper and zinc
coatings have substantial potential in the reduction of bacterial adhesion and biofilm formation
but are not devoid of cytotoxicity to host cells and osseointegration.*~43

In conclusion, there are several options for prosthetic coating to reduce the risk of biofilm
formation and PJI. Especially with the advent and popularization of silver nanoparticles and
iodine-coated agents, the appropriate concentration can have excellent results in the reduction of
postoperative infection. Nevertheless, these antibacterial coatings do not come without their
limitations. The risk of cytotoxicity and poor osseointegration, not to mention antibacterial
resistance, loom large as recognizable limitations from their widespread use. As we continue to



search for ways to mitigate and prevent PJI and postoperative infection following arthroplasty,
biomaterials and antibacterial coatings on prosthetic devices should continue to be studied and
optimized for regular clinical use.
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