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Response/Recommendation:  

Yes. Based on the limited studies available, iodine-coated orthopaedic implants appear to be  

effective in reducing the risk of surgical site infection (SSI)/periprosthetic joint infection (PJI) 

after arthroplasty.  

 

Level of Evidence: Limited 

 

Delegate Vote:  

 

Rationale:   

Periprosthetic joint infection (PJI) most commonly occurs via the development of a biofilm and 

bacterial adherence to implant surfaces. A biofilm is the formation of pathogens and microbial 

cells that form strong interactions with an extracellular matrix, replete with polysaccharides, 

biopolymers, proteins, teichoic acids, lipids, and extracellular DNA, to survive and propagate. In 

order to attach to arthroplasty components, biofilm undergoes a four-stage process: cellular 

adhesion, cellular aggregation, biofilm maturation, and cellular detachment.  

 

In the first stage of biofilm formation, bacteria attaches to the biomaterial surface in a reversible 

manner.1–3 It is reversible due to the characteristics of the external environment, including pH, 

composition, and temperature, among others.4,5 If successful, these adhesions can propagate to 

form microcolonies.6,7 Once microcolonies have been established, the bacterial colony unit 

attracts more nutrients and spreads toward the periphery of the biomaterial device.8–11 As the 

colony gains more nutrients and spreads further, the infection naturally worsens until it 

experiences environmental stresses that prevent further growth and propagation. 

 

Several decades ago, Anthony Gristina developed the ‘race for the surface’ hypothesis which 

describes how the colonization on the surface of a prosthetic device or implant within the human 

body is a ‘race’ between microbes and host cells.12 Whichever group of cells inhabits the implant 

surface first is likely to remain there in perpetuity. This theory helps us understand not only 

which environments and characteristics are likely to allow for biofilm formation, but also helps 

us to understand ways in which to thwart the colonization of pathogens on the surface of 

prosthetic components. 

 

The type of implant surface can substantially impact the rate and severity with which a PJI can 

occur. The type of implant surface is divided into two broad categories – antibacterial coatings 

and modification of the surface itself. Within antibacterial coatings, there are both active and 

passive coatings. Active coatings release antibacterial agents to destroy bacteria whereas passive 

coatings prevent bacteria from attaching or propagating on the biomaterial surface. Modification 



of the surface itself is rarely used as it can impact the ability of the prosthesis to integrate within 

host tissues. 

Active coatings on arthroplasty components are geared toward killing bacteria and other 

microorganisms that can form biofilms.13 Active coatings can further be subdivided into contact-

based and release-based mechanisms.14 Contact-based active coatings create adhesions to 

surfaces of specific antibacterial agents which aids in the killing of those microorganisms. These 

materials are often synthetic such as quaternary ammonium compounds which exert their 

bactericidal capabilities via a charge imbalance.15 Specifically, this means that the positively 

charged calcium and magnesium compounds preferentially bind to the negatively charged 

phospholipid membrane of the bacteria on the outer surface of the biofilm. This covalent bond 

disrupts the cellular membrane of the microorganism and leads to bacterial cell death. Natural 

quaternary ammonium compounds are also available such as antimicrobial peptides (AMP) and 

AME bactericidal agents.16–20 The AMP and AMEs are groups of peptides that can initiate a 

series of chemical reactions leading to bacterial cell death. Onaizi et al. evaluated the use of 

AMPs for antibacterial coatings of medical implants and demonstrated that the use of AMPs has 

a broad range of antimicrobial killing potential.21 

 

Release-based mechanisms are described as systems with carriers for bactericidal agents that can 

be eluted over time in a controlled manner. These coatings can be created with hydrogels, 

ceramics, or polyelectrolyte multilayers. A new technology has incorporated silver cations and 

anions with highly oxidized iodine.22 Another new technology incorporates low molecular 

weight therapeutic agents composed of a polymeric matrix that can store multiple antimicrobial 

drugs.23 Furthermore, antimicrobial agents, such as antibiotics, can be ‘wrapped’ in release-based 

mechanisms for scheduled elution and delivery to a biofilm. For example, an antibacterial 

device, TYRX, is an absorbable antibacterial wrap that can deliver antibiotics to a site of biofilm 

formation. In a study of 500 high-risk cardiac patients, this wrap was able to deliver minocycline 

and rifampin and reduce infection by up to 90% compared to a control group.24 

 

Passive coatings do not release bactericidal agents to the biofilm, but rather prevent bacterial 

adhesion to prosthetic devices and components. An example of passive coating can be found in 

ultraviolet irradiation of titanium dioxide which decreases bacterial adhesion without impacting 

any effect on osseointegration.25 Polymer coatings can also be applied as a coating to 

orthopaedic implants to inhibit bacterial adhesion. For example, hydrophilic polymethacrylic 

acid, polyethylene oxide, and protein-resistant polyethylene glycol all have shown the ability to 

reduce bacterial adhesion in biofilm formation.26,27 Other organic compounds, such as albumin28, 

hydrogels29–31, and silicone-nitride ceramics32,33, have shown efficacy in the literature in 

reducing rates of postoperative infection in orthopaedic procedures. 

 

Iodine-coated implants have recently gained popularity as a way to reduce the rates of PJI and 

reoperation following arthroplasty procedures. Iodine is abundant in the thyroid and one of the 

heaviest elements. It is also commonly paired with povidone to form povidone-iodine which is a 

widely used antiseptic in operating rooms worldwide. Iodine generally does not incur any 

antibacterial resistance, which makes it an appealing antiseptic and coating option for implants. 

Iodine-coated prostheses generally consist of a povidone-iodine electrolyte as the coating 

combined with an anodic oxide film.  

 



Iodine is generally treated with Ti-6Al-4 V titanium implants with success in reducing rates of 

infection. For example, Inoue et al. demonstrated in an in vivo analysis that the mean viable 

bacterial activity was significantly lower on iodine-coated titanium surfaces versus control 

surfaces.34 Another study validated the use of iodine-coated external fixation pins in rabbit 

models which found that pins coated with iodine were more effective at reducing signs of 

infection and inflammation of the pins35. Additionally, this study found that the 

osteoconductivity of the pins was enhanced in the presence of an iodine coat. Miwa et al. also 

evaluated the incidence of infection following the use of iodine coated knee arthroplasty 

implants for malignant bone tumor resection.36 Among 302 patients, they found that 33 (10.9%)  

patients developed a SSI. They also concluded that the use of an iodine coated implant was 

associated with a reduced risk of PJI compared to non-coated implants (odds ratio: 0.29; p = 

0.039).  

 

There are several prospective cohort studies that have analyzed the rate of infection following the 

use of iodine coated prostheses compared to non-coated implants. A prospective clinical study on 

the use of iodine-coated implants found that the infection rate for these implants was low, even 

for immunocompromised hosts, which made the postoperative infection less severe and more 

manageable.37 Another study analyzed the impact iodine coated mega-prostheses may have in 

the prevention and treatment of PJI.37 Between July 2008 and May 2013, 47 patients with 

malignant bone tumors or septic arthritis with osteomyelitis were treated with iodine coated 

mega-prostheses. The authors found that, after 30.1 months follow-up on average, only one 

patient out of 47 had a SSI which was treated with antibiotics alone. Moreover, thyroid tests 

concluded that there were no abnormalities associated with thyroid function in any patient. 

Finally, Kabata et al. performed a clinical trial assessing how the use of iodine-supported 

implants impact the infection rates following complex primary, revision, or infected 

arthroplasties.38 After 33 months, none of the 30 joints among the 28 patients were found to have 

clinical evidence of an infection and thyroid function remained stable. Moreover, no evidence of 

loosening or hardware complications were detected within the follow-up period. These data may 

suggest that iodine-coated implants are a reasonable option to prevent and treat cases of infected 

arthroplasty. 

 

As previously mentioned, cytotoxicity is generally a concern with the use of these coated 

prosthetic components – if they are harmful to the adhesion and propagation of bacteria and 

biofilm, they may also be harmful to host cells and osseointegration. Studies like Ueoka et al., in 

which they evaluated the antibacterial activity of iodine-coated titanium implants in a rat model 

and demonstrated the reduction in bacterial cell viability and survival, still leave unanswered 

questions regarding the toxicity and osseointegration of such implants.39,40 Copper and zinc 

coatings have substantial potential in the reduction of bacterial adhesion and biofilm formation 

but are not devoid of cytotoxicity to host cells and osseointegration.41–43  

 

In conclusion, there are several options for prosthetic coating to reduce the risk of biofilm 

formation and PJI. Especially with the advent and popularization of silver nanoparticles and 

iodine-coated agents, the appropriate concentration can have excellent results in the reduction of 

postoperative infection. Nevertheless, these antibacterial coatings do not come without their 

limitations. The risk of cytotoxicity and poor osseointegration, not to mention antibacterial 

resistance, loom large as recognizable limitations from their widespread use. As we continue to 



search for ways to mitigate and prevent PJI and postoperative infection following arthroplasty, 

biomaterials and antibacterial coatings on prosthetic devices should continue to be studied and 

optimized for regular clinical use. 
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