G86 – Should antimicrobial treatment target Minimal Inhibitory Concentrations (MIC) or Minimal Biofilm Eradication Concentration (MBEC) of organisms?

Matthew J. Dietz, Nour Bouji, Jaime Lora-Tamayo, Jakub Ratkowski, Ola Rolfson, Mehran Varnasseri, Joshua Bingham, David Lowenberg, Margarita Trobos

Response/Recommendation: MIC susceptibility testing is utilized for identifying antibiotic-resistant strains and selecting effective therapeutic strategies for planktonic infections. If the causative microorganism can form biofilm *in vitro*, MBEC susceptibility testing may provide a more realistic insight into the empirical success of a specific antibiotic. Currently, however, the MBEC value is not a clinically available metric and has not been definitively linked to any impact on treatment recommendations. Future clinical studies are needed to evaluate if MBEC-guided treatment improves treatment success and patient outcomes.

Level of Evidence: Limited

Delegate Vote:

Rationale:

The minimum biofilm eradication concentration (MBEC) is a measure that is increasingly being evaluated as an indicator of antibiotic susceptibility *in vitro* biofilms. The growing recognition of biofilm resistance in implant-related and non-implant related infections has prompted interest in MBEC as a potential measure to guide treatment. There are currently no standardized measurement parameters (surface, age, duration of exposure) for MBEC susceptibility testing. This is counter to the minimum inhibitory concentration (MIC), a well-established value both clinically and microbiologically, which is assessed via a standard set of methods and breakpoints, such as those offered by the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST).[1, 2] These MIC methods of susceptibility testing, although validated and reproducible, focus on the planktonic state of bacteria rather than bacteria within a biofilm state.[3]

A comprehensive literature search was conducted using PubMed and Embase databases, initially identifying 535 studies. Five hundred nineteen abstracts were screened, and 157 studies were assessed for eligibility as potentially relevant studies, of which 21 were selected for indepth review.

Studies have shown that the MIC of pathogens can be achieved in surgical tissues at the time of implantation. For example, Komatsu *et al.* reviewed the pharmacokinetics of cefazolin in serum and hip joint capsule tissues during primary total hip arthroplasty and showed that cefazolin maintained supra-MIC levels for up to 3 hours.[4] MIC values for therapeutics have been detected in antibiotic spacers during the initial implantation and at the time of revision or reimplantation surgery.[5-8] Von Baum *et al.* and others have found that antibiotic concentrations within bone (both cancellous and cortical) can achieve MIC values for common pathogens.[9, 10] Favorable clinical outcomes have been achieved with quinolones, mainly when the peak serum/MIC ratio is ≥ 12 , resulting in good bone penetration.[11] The amount of fluoroquinolones (2-6 µg/ml), cephalosporins (267-356 µg/ml) and amikacin(92-215 µg/ml) needed to achieve MIC900f *Pseudomonas aeruginosa* biofilm from implant associated infections was significantly different than the same bacteria in planktonic form (fluoroquinolones 0.8 µg/ml, 19 µg/ml for cephalosporins, and amikacin 3) µg/ml.[12] In a preclinical model of

methicillin-resistant Staphylococcus aureus osteomyelitis, intramuscular moxifloxacin has been shown to improve outcomes at levels above the MIC (43 times) but below the minimum bactericidal concentration (MBEC).[13] Certain antibiotics have been found to have more effect than others in the treatment of implant-related infections. Tunney et al.. found that bacteria isolated from revision hip surgery were more susceptible to vancomycin and ciprofloxacin than to gentamicin. Minimum bactericidal concentrations (MBC, 99.9% killing) were significantly higher (10-1000 x) than MIC values.[14, 15] Additional work by Brady et al., found that 20 staphylococcal isolates from implant infections had MBEC values higher than their MIC values and recommended MBEC testing in clinically relevant situations where implants or devices had to remain in situ.[15] While some antibiotics are ineffective against bacteria in biofilm,[16] rifampicin has shown the lowest MBEC/MIC ratios in staphylococcal strains causing periprosthetic joint infections. [17] The suggestion that antibiotics delivered at levels that achieve MBEC would improve clinical outcomes is made but not yet supported in the literature. The reporting of MBEC values can also vary based on clinical isolates, antibiotic selection, and antibiotic synergistic or antagonistic activity.[18] [19, 20] Meléndez-Carmona et al. found no relationship between antibiofilm activity (defined as biofilm-embedded cells recount and crystal violet staining) of levofloxacin, rifampin, and their combination, and the MBEC value when evaluating S. aureus isolates from patients with PJI who had undergone debridement and retention of components.[21] Subinhibitory treatments have led to increased biofilm formation and upregulation of genes related to biofilm formation.[22-25] Additionally, the susceptibility of biofilms to antibiotics may change over time with exposure. [24-27] This could be due to changes within the biofilm or the rapid emergence of small colony variants. However, this can vary depending on the bacterial species, clinical isolate, or location within a biofilm.[28] Clinical isolates, when in biofilm form, may also respond differently to combinations of antibiotics and adjuvants.[29, 30]

Malchau et al. demonstrated that strong biofilm production is associated with increased antibiotic resistance and a higher recurrence rate of periprosthetic joint infections.[31] Therefore, the characterization of biofilm abilities and MBEC susceptibility testing of clinical strains could serve as relevant clinical diagnostic tools to guide treatments or indicate when specific treatments are futile. The development of the MBEC, or methods to determine antimicrobial biofilm activity, has been described. [32] [15, 31, 33, 34] However, clinical studies need to verify the clinical relevance of the MBEC method. [28] A retrospective study found that in six out of seven patients with treatment failure, staphylococcal and enterococcal strains exhibited high minimum bactericidal concentrations (MBECs) against the antibiotics used to treat osteomyelitis associated with percutaneous orthopaedic implants. [34] A prospective clinical trial, where MBEC guides oral antibiotic therapy in the intervention arm, is currently underway; however, no data are yet available for review.[35] Moreover, not only the treatment success but also the tolerability of antibiotics at the required doses to achieve MBEC will be critical, as the amount of antibiotics needed to achieve the MBEC in vitro is often higher than what can be safely achieved in vivo. [36] While in vitro assessment of MBEC is possible, the measurement of biofilm eradication is reliant on more variables than that of MIC testing. Before the definition of breakpoints for clinical resistance is redefined, the parameters surrounding the MBEC method should be further identified and standardized. In the future, MBEC testing will become increasingly relevant in cases where implants cannot be removed or when dealing with recalcitrant infections. In cases where the MBEC is too high, alternative treatment strategies may need to be considered.

Conclusion: Strong biofilm production is associated with increased antibiotic resistance and a higher recurrence rate of periprosthetic joint infections. MBEC susceptibility testing could guide therapeutic treatments, though its clinical relevance needs validation. An ongoing clinical trial aiming to assess MBEC-guided therapy is currently underway. Standardizing MBEC

testing parameters is crucial, and their relevance may increase in managing implant-related infections. Incorporating MBEC testing could improve treatment outcomes by providing accurate antibiotic dosing guidelines, but further research is needed to confirm its benefits.

References

- [1] CLSI. Clsi m100-ed35:2025 performance standards for antimicrobial susceptibility testing, 35th edition,
- https://em100.edaptivedocs.net/GetDoc.aspx?doc=CLSI%20M100%20ED35:2025&sbssok=CLSI%20M100%20ED35:2025%20SECTION%20ABSTRACT&format=HTML#CLSI%20M100%20ED35:2025%20SECTION%20ABSTRACT [Accessed March 9, 2025].
- [2] Testing TECoAS. Breakpoint tables for interpretation of mics and zone diameters v 15.0, https://www.eucast.org/clinical_breakpoints].
- [3] Macià MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect 2014;20:10:981-90 https://doi.org/10.1111/1469-0691.12651.
- [4] Komatsu T, Natsume Y, Uchiyama K, Ikeda S, Tomoda Y, Takayama Y et al. Population pharmacokinetic and pharmacodynamic target attainment analysis of cefazolin in the serum and hip joint capsule of patients undergoing total hip arthroplasty. Antimicrob Agents Chemother 2021;65:4 https://doi.org/10.1128/AAC.02114-20.
- [5] Tøttrup M, Søballe K, Bibby BM, Hardlei TF, Hansen P, Fuursted K et al. Bone, subcutaneous tissue and plasma pharmacokinetics of cefuroxime in total knee replacement patients a randomized controlled trial comparing continuous and short-term infusion. APMIS 2019;127:12:779-88 https://doi.org/10.1111/apm.12996.
- [6] Maale GE, Eager JJ, Mohammadi DK, Calderon FA, 2nd. Elution profiles of synthetic caso(4) hemihydrate beads loaded with vancomycin and tobramycin. Eur J Drug Metab Pharmacokinet 2020;45:4:547-55 https://doi.org/10.1007/s13318-020-00622-8.
- [7] Howlin RP, Brayford MJ, Webb JS, Cooper JJ, Aiken SS, Stoodley P. Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrob Agents Chemother 2015;59:1:111-20 https://doi.org/10.1128/AAC.03676-14.
- [8] Fink B, Vogt S, Reinsch M, Büchner H. Sufficient release of antibiotic by a spacer 6 weeks after implantation in two-stage revision of infected hip prostheses. Clin Orthop Relat Res 2011;469:11:3141-7 https://doi.org/10.1007/s11999-011-1937-4.
- [9] von Baum H, Böttcher S, Abel R, Gerner HJ, Sonntag HG. Tissue and serum concentrations of levofloxacin in orthopaedic patients. Int J Antimicrob Agents 2001;18:4:335-40 https://doi.org/10.1016/s0924-8579(01)00423-x.
- [10] Scaglione F, De Martini G, Peretto L, Ghezzi R, Baratelli M, Arcidiacono MM et al. Pharmacokinetic study of cefodizime and ceftriaxone in sera and bones of patients undergoing hip arthroplasty. Antimicrob Agents Chemother 1997;41:10:2292-4 https://doi.org/10.1128/AAC.41.10.2292.
- [11] Craig WA. Pharmacokinetic/pharmacodynamic parameters: Rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998;26:1:1-10; quiz 1-2 https://doi.org/10.1086/516284.
- [12] Babushkina IV, Mamonova I, Ulyanov VY, Gladkova E V, Shpinyak SP. Resistance to antibiotics in plankton and biofilm cultures of pseudomonas aeruginosa clinical strains. Bull Exp Biol Med 2021;172:2:155-7 https://doi.org/10.1007/s10517-021-05354-6.
- [13] Soranoglou V, Galanopoulos I, Giamarellos-Bourboulis EJ, Papalois A, Giannitsioti E, Poultsides LA et al. Efficacy of intramuscular moxifloxacin in the treatment of experimental

- osteomyelitis caused by methicillin-resistant staphylococcus aureus. Int J Antimicrob Agents 2017;50:2:186-90 https://doi.org/10.1016/j.ijantimicag.2017.01.041.
- [14] Tunney MM, Ramage G, Patrick S, Nixon JR, Murphy PG, Gorman SP. Antimicrobial susceptibility of bacteria isolated from orthopedic implants following revision hip surgery. Antimicrob Agents Chemother 1998;42:11:3002-5 https://doi.org/10.1128/AAC.42.11.3002.
- [15] Brady AJ, Laverty G, Gilpin DF, Kearney P, Tunney M. Antibiotic susceptibility of planktonic- and biofilm-grown staphylococci isolated from implant-associated infections: Should mbec and nature of biofilm formation replace mic? J Med Microbiol 2017;66:4:461-9 https://doi.org/10.1099/jmm.0.000466.
- [16] Abad L, Tafani V, Tasse J, Josse J, Chidiac C, Lustig S et al. Evaluation of the ability of linezolid and tedizolid to eradicate intraosteoblastic and biofilm-embedded staphylococcus aureus in the bone and joint infection setting. J Antimicrob Chemother 2019;74:3:625-32 https://doi.org/10.1093/jac/dky473.
- [17] Trobos M, Firdaus R, Svensson Malchau K, Tillander J, Arnellos D, Rolfson O et al. Genomics of staphylococcus aureus and staphylococcus epidermidis from periprosthetic joint infections and correlation to clinical outcome. Microbiol Spectr 2022;10:4:e0218121 https://doi.org/10.1128/spectrum.02181-21.
- [18] Dall GF, Tsang SJ, Gwynne PJ, MacKenzie SP, Simpson A, Breusch SJ et al. Unexpected synergistic and antagonistic antibiotic activity against staphylococcus biofilms. J Antimicrob Chemother 2018;73:7:1830-40 https://doi.org/10.1093/jac/dky087.
- [19] Olson ME, Slater SR, Rupp ME, Fey PD. Rifampicin enhances activity of daptomycin and vancomycin against both a polysaccharide intercellular adhesin (pia)-dependent and independent staphylococcus epidermidis biofilm. J Antimicrob Chemother 2010;65:10:2164-71 https://doi.org/10.1093/jac/dkq314.
- [20] Albano M, Karau MJ, Greenwood-Quaintance KE, Osmon DR, Oravec CP, Berry DJ et al. In vitro activity of rifampin, rifabutin, rifapentine, and rifaximin against planktonic and biofilm states of staphylococci isolated from periprosthetic joint infection. Antimicrob Agents Chemother 2019;63:11 https://doi.org/10.1128/AAC.00959-19.
- [21] Meléndez-Carmona M, Mancheño-Losa M, Ruiz-Sorribas A, Muñoz-Gallego I, Viedma E, Chaves F et al. Strain-to-strain variability among staphylococcus aureus causing prosthetic joint infection drives heterogeneity in response to levofloxacin and rifampicin. J Antimicrob Chemother 2022;77:12:3265-9 https://doi.org/10.1093/jac/dkac311.
- [22] Tan J, Wang J, Yang C, Zhu C, Guo G, Tang J et al. Antimicrobial characteristics of berberine against prosthetic joint infection-related staphylococcus aureus of different multilocus sequence types. BMC Complement Altern Med 2019;19:1:218 https://doi.org/10.1186/s12906-019-2558-9.
- [23] Brothers KM, Parker DM, Taguchi M, Ma D, Mandell JB, Thurlow LL et al. Dose optimization in surgical prophylaxis: Sub-inhibitory dosing of vancomycin increases rates of biofilm formation and the rates of surgical site infection. Sci Rep 2023;13:1:4593 https://doi.org/10.1038/s41598-023-30951-y.
- [24] Castaneda P, McLaren A, Tavaziva G, Overstreet D. Biofilm antimicrobial susceptibility increases with antimicrobial exposure time. Clin Orthop Relat Res 2016;474:7:1659-64 https://doi.org/10.1007/s11999-016-4700-z.
- [25] Ravn C, Furustrand Tafin U, Bétrisey B, Overgaard S, Trampuz A. Reduced ability to detect surface-related biofilm bacteria after antibiotic exposure under in vitro conditions. Acta Orthop 2016;87:6:644-50 https://doi.org/10.1080/17453674.2016.1246795.
- [26] Sakimura T, Kajiyama S, Adachi S, Chiba K, Yonekura A, Tomita M et al. Biofilm-forming staphylococcus epidermidis expressing vancomycin resistance early after adhesion to a metal surface. Biomed Res Int 2015;2015:943056 https://doi.org/10.1155/2015/943056.

- [27] George J, Newman JM, Klika AK, Miller EM, Tan TL, Parvizi J et al. Changes in antibiotic susceptibility of staphylococcus aureus between the stages of 2-stage revision arthroplasty. J Arthroplasty 2018;33:6:1844-9 https://doi.org/10.1016/j.arth.2018.01.056. [28] Manasherob R, Mooney JA, Lowenberg DW, Bollyky PL, Amanatullah DF. Tolerant small-colony variants form prior to resistance within a staphylococcus aureus biofilm based on antibiotic selective pressure. Clin Orthop Relat Res 2021;479:7:1471-81 https://doi.org/10.1097/CORR.00000000000001740.
- [29] Siala W, Rodriguez-Villalobos H, Fernandes P, Tulkens PM, Van Bambeke F. Activities of combinations of antistaphylococcal antibiotics with fusidic acid against staphylococcal biofilms in in vitro static and dynamic models. Antimicrob Agents Chemother 2018;62:7 https://doi.org/10.1128/AAC.00598-18.
- [30] Mandell JB, Orr S, Koch J, Nourie B, Ma D, Bonar DD et al. Large variations in clinical antibiotic activity against staphylococcus aureus biofilms of periprosthetic joint infection isolates. J Orthop Res 2019 https://doi.org/10.1002/jor.24291.
- [31] Svensson Malchau K, Tillander J, Zaborowska M, Hoffman M, Lasa I, Thomsen P et al. Biofilm properties in relation to treatment outcome in patients with first-time periprosthetic hip or knee joint infection. J Orthop Translat 2021;30:31-40 https://doi.org/10.1016/j.jot.2021.05.008.
- [32] Antunes AL, Trentin DS, Bonfanti JW, Pinto CC, Perez LR, Macedo AJ et al. Application of a feasible method for determination of biofilm antimicrobial susceptibility in staphylococci. APMIS 2010;118:11:873-7 https://doi.org/10.1111/j.1600-0463.2010.02681.x. [33] Coraça-Hubér DC, Fille M, Hausdorfer J, Pfaller K, Nogler M. Evaluation of mbecTM-htp biofilm model for studies of implant associated infections. J Orthop Res 2012;30:7:1176-80 https://doi.org/10.1002/jor.22065.
- [34] Zaborowska M, Tillander J, Brånemark R, Hagberg L, Thomsen P, Trobos M. Biofilm formation and antimicrobial susceptibility of staphylococci and enterococci from osteomyelitis associated with percutaneous orthopaedic implants. J Biomed Mater Res B Appl Biomater 2017;105:8:2630-40 https://doi.org/10.1002/jbm.b.33803.
- [35] Tillander JAN, Rilby K, Svensson Malchau K, Skovbjerg S, Lindberg E, Rolfson O et al. Treatment of periprosthetic joint infections guided by minimum biofilm eradication concentration (mbec) in addition to minimum inhibitory concentration (mic): Protocol for a prospective randomised clinical trial. BMJ Open 2022;12:9:e058168 https://doi.org/10.1136/bmjopen-2021-058168.
- [36] Hajdu S, Lassnigg A, Graninger W, Hirschl AM, Presterl E. Effects of vancomycin, daptomycin, fosfomycin, tigecycline, and ceftriaxone on staphylococcus epidermidis biofilms. J Orthop Res 2009;27:10:1361-5 https://doi.org/10.1002/jor.20902.