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Response/Recommendation: MIC susceptibility testing is utilized for identifying antibiotic-

resistant strains and selecting effective therapeutic strategies for planktonic infections. If the 

causative microorganism can form biofilm in vitro, MBEC susceptibility testing may provide 

a more realistic insight into the empirical success of a specific antibiotic. Currently, however, 

the MBEC value is not a clinically available metric and has not been definitively linked to any 

impact on treatment recommendations.  Future clinical studies are needed to evaluate if 

MBEC-guided treatment improves treatment success and patient outcomes. 

 

Level of Evidence: Limited 

 

Delegate Vote: 

 

Rationale:  

 

The minimum biofilm eradication concentration (MBEC) is a measure that is increasingly being 

evaluated as an indicator of antibiotic susceptibility in vitro biofilms.  The growing recognition 

of biofilm resistance in implant-related and non-implant related infections has prompted interest 

in MBEC as a potential measure to guide treatment. There are currently no standardized meas-

urement parameters (surface, age, duration of exposure) for MBEC susceptibility testing.  This 

is counter to the minimum inhibitory concentration (MIC), a well-established value both clini-

cally and microbiologically, which is assessed via a standard set of methods and breakpoints, 

such as those offered by the Clinical and Laboratory Standards Institute (CLSI) and the Euro-

pean Committee on Antimicrobial Susceptibility Testing (EUCAST).[1, 2] These MIC methods 

of susceptibility testing, although validated and reproducible, focus on the planktonic state of 

bacteria rather than bacteria within a biofilm state.[3]   

 

A comprehensive literature search was conducted using PubMed and Embase databases, ini-

tially identifying 535 studies. Five hundred nineteen abstracts were screened, and 157 studies 

were assessed for eligibility as potentially relevant studies, of which 21 were selected for in-

depth review.  

 

Studies have shown that the MIC of pathogens can be achieved in surgical tissues at the time 

of implantation.  For example, Komatsu et al. reviewed the pharmacokinetics of cefazolin in 

serum and hip joint capsule tissues during primary total hip arthroplasty and showed that 

cefazolin maintained supra-MIC levels for up to 3 hours.[4]  MIC values for therapeutics have 

been detected in antibiotic spacers during the initial implantation and at the time of revision or 

reimplantation surgery.[5-8]   Von Baum et al. and others have found that antibiotic concen-

trations within bone (both cancellous and cortical) can achieve MIC values for common path-

ogens.[9, 10]   Favorable clinical outcomes have been achieved with quinolones, mainly when 

the peak serum/MIC ratio is ≥ 12, resulting in good bone penetration.[11]   The amount of 

fluoroquinolones (2-6 µg/ml), cephalosporins (267-356 µg/ml)  and amikacin(92-215 µg/ml)   

needed to achieve MIC90of  Pseudomonas aeruginosa biofilm from implant associated infec-

tions was significantly different than the same bacteria in planktonic form (fluoroquinolones 

0.8 µg/ml, 19 µg/ml for cephalosporins, and amikacin 3) µg/ml.[12] In a preclinical model of 
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methicillin-resistant Staphylococcus aureus osteomyelitis, intramuscular moxifloxacin has 

been shown to improve outcomes at levels above the MIC (43 times) but below the minimum 

bactericidal concentration (MBEC).[13]  Certain antibiotics have been found to have more ef-

fect than others in the treatment of implant-related infections.  Tunney et al.. found that bacte-

ria isolated from revision hip surgery were more susceptible to vancomycin and ciprofloxacin 

than to gentamicin.  Minimum bactericidal concentrations (MBC, 99.9% killing) were signifi-

cantly higher (10-1000 x) than MIC values.[14, 15]  Additional work by Brady et al.. found 

that 20 staphylococcal isolates from implant infections had MBEC values higher than their 

MIC values and recommended MBEC testing in clinically relevant situations where implants 

or devices had to remain in situ.[15] While some antibiotics are ineffective against bacteria in 

biofilm,[16] rifampicin has shown the lowest MBEC/MIC ratios in staphylococcal strains 

causing periprosthetic joint infections. [17]  The suggestion that antibiotics delivered at levels 

that achieve MBEC would improve clinical outcomes is made but not yet supported in the lit-

erature.  The reporting of MBEC values can also vary based on clinical isolates, antibiotic se-

lection, and antibiotic synergistic or antagonistic activity.[18] [19, 20] Meléndez-Carmona et 

al. found no relationship between   antibiofilm activity (defined as biofilm-embedded cells re-

count and crystal violet staining) of levofloxacin, rifampin, and their combination, and the 

MBEC value when evaluating S. aureus isolates from patients with PJI who had undergone 

debridement and retention of components.[21]   Subinhibitory treatments have led to in-

creased biofilm formation and upregulation of genes related to biofilm formation.[22-25] Ad-

ditionally, the susceptibility of biofilms to antibiotics may change over time with exposure.  

[24-27]  This could be due to changes within the biofilm or the rapid emergence of small col-

ony variants. However, this can vary depending on the bacterial species, clinical isolate, or lo-

cation within a biofilm.[28] Clinical isolates, when in biofilm form, may also respond differ-

ently to combinations of antibiotics and adjuvants.[29, 30]    

Malchau et al. demonstrated that strong biofilm production is associated with increased anti-

biotic resistance and a higher recurrence rate of periprosthetic joint infections.[31] Therefore, 

the characterization of biofilm abilities and MBEC susceptibility testing of clinical strains 

could serve as relevant clinical diagnostic tools to guide treatments or indicate when specific 

treatments are futile. The development of the MBEC, or methods to determine antimicrobial 

biofilm activity, has been described. [32]  [15, 31, 33, 34]  However, clinical studies need to 

verify the clinical relevance of the MBEC method.[28] A retrospective study found that in six 

out of seven patients with treatment failure, staphylococcal and enterococcal strains exhibited 

high minimum bactericidal concentrations (MBECs) against the antibiotics used to treat oste-

omyelitis associated with percutaneous orthopaedic implants. [34] A prospective clinical trial, 

where MBEC guides oral antibiotic therapy in the intervention arm, is currently underway; 

however, no data are yet available for review.[35] Moreover, not only the treatment success 

but also the tolerability of antibiotics at the required doses to achieve MBEC will be critical, 

as the amount of antibiotics needed to achieve the MBEC in vitro is often higher than what 

can be safely achieved in vivo.  [36] While in vitro assessment of MBEC is possible, the 

measurement of biofilm eradication is reliant on more variables than that of MIC testing.  Be-

fore the definition of breakpoints for clinical resistance is redefined, the parameters surround-

ing the MBEC method should be further identified and standardized. In the future, MBEC 

testing will become increasingly relevant in cases where implants cannot be removed or when 

dealing with recalcitrant infections.  In cases where the MBEC is too high, alternative treat-

ment strategies may need to be considered.  

 

Conclusion: Strong biofilm production is associated with increased antibiotic resistance and a 

higher recurrence rate of periprosthetic joint infections. MBEC susceptibility testing could 

guide therapeutic treatments, though its clinical relevance needs validation. An ongoing clini-

cal trial aiming to assess MBEC-guided therapy is currently underway. Standardizing MBEC 
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testing parameters is crucial, and their relevance may increase in managing implant-related 

infections. Incorporating MBEC testing could improve treatment outcomes by providing ac-

curate antibiotic dosing guidelines, but further research is needed to confirm its benefits. 
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