ICM 2025 Question B32: “Are there any physical non-cytotoxic methods that can be
utilized to disrupt and destroy biofilm in orthopedic infections?”
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RESPONSE/RECOMMENDATION: Yes, photodynamic therapy, ultrasound treatment, and
electrical treatment such as induction heating have been widely studied as effective physical
methods to disrupt and destroy biofilms in orthopedic infections, and various strategies to reduce
their cytotoxicity have also been investigated. However, Level 1 evidence demonstrating the
efficacy and safety of the treatments in clinical trials does not exist and needs to be addressed in
the future.

LEVEL OF EVIDENCE: Weak

DELEGATE VOTE: Agree: [% vote], Disagree: [%], Abstain: [%]

RATIONALE: Various physical methods have been explored as potential alternatives
antibiotic drug treatments for biofilm eradication. To answer this question, we conducted a
systematic review, using specific MESH terms developed by librarians, to identify all relevant
publications in the Medline and Embase databases, covering studies published up to November
2024. Search Results yielded 889 publications in English language. Two of the authors went
through title and abstract screening and discrepant results were adjudicated by a third person.
Then 82 full articles were reviewed. Finally, 69 articles were included in this systematic review.
The treatment methods included 14 articles related to photodynamic therapy, 21 articles related
to ultrasound, 28 articles related to electric treatment, and 6 articles related to other methods.
Below is a summary of the findings.

1. Photodynamic therapy (PDT) is a treatment modality that involves the systemic or local
application of various photosensitizers, followed by exposure to light of specific wavelengths
and the presence of oxygen and other factors, to eradicate tumors or bacteria. 2 This method
transfers energy from the photosensitizer (PS) to oxygen through photoexcitation, generating
reactive oxygen species (ROS), which dissolve bacterial cell membranes and inactivate proteins,
thereby demonstrating efficacy against biofilm infections.® Various novel and existing reagents
have been applied as PS, and it has been reported that PS combined with bactericidal dyes or
detergents exhibits a potent effect on biofilms upon photoexcitation.* ® Nanoparticles such as
titanium dioxide (TiO2) nanoparticles and TiO: nanorods have demonstrated bactericidal effects
against biofilms and bacteria when exposed to UV or near-infrared light.5° Additionally, it has
been reported in in-vitro studies and rat models that combining photothermal therapy (PTT) and
PDT using red phosphorus and near-infrared light can effectively disrupt biofilms without
causing damage to normal tissues.*® These technologies have also been applied to implant
coatings, demonstrating potential for preventive effects against implant-associated infections.*!
The advantages of antibacterial PDT include the absence of concerns regarding antibiotic
resistance, the ability to selectively target bacteria using various PS with specific properties,
minimal damage to host tissues, relatively rapid bactericidal activity (within 30 minutes),
effectiveness against both Gram-negative and Gram-positive bacteria as well as fungi, and
efficacy in treating wound infections with compromised blood flow.** On the other hand, the



limitations of these technologies include the necessity for surgical intervention to apply PS to the
biofilm surrounding implants and to activate them using a light source. Additionally, there are no
practical examples of their application in clinical trials, and their effectiveness in real-world
clinical settings has yet to be validated.

2. Ultrasound (US) treatment has been widely reported as a useful tool for identifying
causative pathogens in the diagnosis of periprosthetic joint infections (PJI). Additionally, it is a
physical technology that has shown promising utility in the treatment of biofilms, with its
effectiveness being increasingly documented.!® The effect of US on biofilms derives from its
ability to deliver energy either directly from the device or through the skin, transferring it to
biological tissues or metallic surfaces.'® US is generally classified based on its frequency, with
frequencies above 1 MHz referred to as high-frequency US and those below 500 kHz as low-
frequency US. High-frequency US is characterized by its ability to deliver energy with high
precision to a targeted area. This property enables the generation of thermal energy and the
production of as nanoparticles in liquids. In the treatment of orthopedic infections, technologies
have been reported that combine high-intensity focused US (HIFU), which generates thermal
energy, with low-temperature-sensitive liposomes (LTSL) for antibiotic delivery!’. Additionally,
bactericidal techniques utilizing nanoparticles generated by HIFU have also been documented.'®
19 On the other hand, low-frequency US, characterized by its lower frequency and ability to
deliver energy over a wide area, is prone to inducing cavitation (the formation and collapse of
bubbles) in liquids. Leveraging this property, it has been suggested that low-frequency US can
enhance the transport rate of antimicrobial agents to bacteria, thereby increasing the efficacy of
antibiotics.?’ Furthermore, several studies have reported the bactericidal effects of combining
low-frequency US with vancomycin or gentamicin. ! 2° 2% 23 The use of piezoelectric ultrasonic
scalpels and the combination of low-intensity pulsed US (LIPUS) with povidone-iodine have
also been demonstrated to be effective in bacterial eradication.?* 2 Pulse lavage, which is
frequently used in orthopedic surgeries, has been reported to be ineffective against biofilms when
used alone.?® However, studies have shown that its combination with US can effectively reduce
biofilm formation. 2’ Furthermore, it has been reported that cavitation induced by low-frequency
US can inhibit the expression of the ica4dD and mecA genes in methicillin-resistant bacterial
strains, while also enhancing the activity of human B-defensin-3.%® 2° Su et al proposed a novel
therapeutic strategy called spatiotemporal sono-metalloimmunotherapy utilizing MnO--
hydrangea nanoparticles as metalloantibiotics. The combination of US with such sonosensitizers
in sonodynamic therapy has shown promise for the effective disruption of implant-associated
biofilms, highlighting its potential utility in this field.** On the other hand, several in vitro studies
have reported that US itself does not possess intrinsic antibacterial effects, and bacteria may
remain even after the disruption of biofilms.*!-** Additionally, sonication has been associated
with adverse effects such as damage to articular cartilage and implants. **Therefore, for future
clinical applications, further investigation is required to evaluate not only its efficacy against
biofilms but also its safety profile.

3. Electrical treatment: The generation of electric currents and electric fields is known to
strongly influence the growth and death of both prokaryotic and eukaryotic cells.*® These effects
also extend significantly to the disruption of biofilms and the regulation of bacterial growth and
death.’” van der Borden et al. reported that the application of direct current (DC) for six hours
successfully caused the detachment of biofilms from stainless steel surfaces, suggesting that this
method could serve as an effective approach for the treatment of biofilm-associated infections.*3
Subsequently, Brinkman et al. reported that the bactericidal effect of direct current (DC) within



biofilms, known as the electricidal effect, is at least partially mediated by the production of
reactive oxygen species (ROS), which induce bacterial death within the biofilm.3® Direct current
(DC) electric treatment has been shown to be effective against both Gram-positive and Gram-
negative bacteria. It has also been reported that anodizing metal surfaces to form a nanotube
structure and applying electrical stimulation can reduce biofilm formation.*’Additionally, it has
been confirmed to enhance the efficacy of antibiotics and disrupt biofilms effectively.***® This
combination of DC and antibiotics, referred to as the "bioelectric effect," has been shown to
efficiently promote the disruption of biofilms.*® On the other hand, some studies have reported
limited effectiveness for specific combinations of bacteria and antibiotics (e.g., vancomycin
against Staphylococcus epidermidis **or piperacillin against Pseudomonas aeruginosa®’). This
highlights the need for the development of protocols tailored to specific bacterial species and
antimicrobial therapies.

Ehrensberger et al. reported that a technique called Cathodic Voltage-Controlled
Electrical Stimulation (CVCES) is effective in treating biofilms on titanium surfaces and within
bone.* This method differs from conventional DC in that it controls voltage on the cathodic side.
Studies conducted in vitro and in rodent models have demonstrated that it does not cause damage
to surrounding tissues, exhibits synergistic effects with antibiotics and povidone-iodine, and
holds promise as a technology for treating implant-associated infections, including periprosthetic
joint infections (PJI).*62 On the other hand, it has been reported that this method is ineffective
against biofilms on bone cement, and its antibacterial efficacy on non-metallic materials remains
a challenge for future research.®® Electric treatment has various applications. In a study by Taira
et al., it was observed that conducting multiple short-duration electrical interventions of one
minute each effectively removed S. aureus biofilms formed on titanium rings.’* Additionally, in a
study by Tamimi et al., a device equipped with bipolar electrodes capable of generating different
waveforms was developed to investigate the bioelectric effect on biofilms formed on total knee
arthroplasty (TKA) implants. Their findings demonstrated the effectiveness of this approach in
biofilm removal.>* Wang et al. designed a prototype device for wireless DC treatment using
electromagnetic induction generated remotely via a wireless power source. They reported
effective biofilm eradication in both ex vivo and in vivo models.>®

Electromagnetic fields are also gaining attention as a novel therapeutic approach that
leverages the conductive properties of implant materials. It has been reported that bacterial
biofilms exhibit reduced metabolic activity when exposed to static electromagnetic fields
generated by direct current (DC) or dynamic electromagnetic fields generated by alternating
current (AC). Furthermore, the combination of electromagnetic fields with magnetic
nanoparticles or antibiotics has been shown to enable effective biofilm eradication.’® >’ The
application of electrical currents to metallic implants generates magnetic fields, and the
utilization of these electromagnetic fields, along with the associated thermal effects, has emerged
as a promising non-invasive therapeutic strategy for targeting biofilms on implant surfaces. The
efficacy of this approach has been substantiated through both in vitro experiments and studies
conducted on large animal models.**! Pijls et al. reported that non-contact induction heating
(NCIH) of metal implants using pulsed electromagnetic fields (PEMF) is an emerging and
promising field that could play a significant role in the multimodal treatment of PJI when
combined with other therapies.%% %2 NCIH uses PEMFs or alternating magnetic fields (AMF) to
cause thermal damage to the bacteria within the biofilm on the metal implant surface without
directly heating tissue.>*-*! While there are not yet any clinical studies published, the in vitro
results are very promising: multiple in vitro studies have shown a reduced bacterial load due to



the NCIH on metal implants, with some even demonstrating complete eradication of mature
biofilms and others showing a synergistic effect with other antimicrobial compound.*-6!
Furthermore, Gilotra reported that capacitive coupling reduced biofilms on implant surfaces in a
spinal infection animal model through a non-invasive approach.’® These heating methods have
been shown to significantly reduce bacterial counts at temperatures exceeding 60°C; however,
there is concern about potential tissue damage caused by the heat.®” To address these concerns,
several strategies have been proposed to enhance safety and minimize heat-related damage.
These include segmental heating techniques designed to target specific regions and prevent
uneven heating associated with irregular implant geometries, the incorporation of antibiotics or
N-acetylcysteine (NAC) to achieve therapeutic efficacy at lower temperatures, and the
development of advanced acoustic sensors for real-time monitoring of excessive heat generation
at the implant-tissue interface. These approaches collectively aim to mitigate potential risks and
optimize the safety profile of this therapeutic intervention.®9%® Therapies utilizing
electromagnetic fields, including induction heating combined with antibiotics, are anticipated to
serve as non-invasive and effective methods for the removal of biofilms on implants. With
further advancements in safety-enhancing technologies and research aimed at clinical
applications, this approach holds promise for future application in the treatment of implant-
related infections.

4. Other physical methods: Plasma sterilization techniques for orthopedic implant
infections have been reported, including a dielectric-barrier discharge method that utilizes the
surface of joint implants as electrodes for sterilization, and a technology known as Floating
Electrode Dielectric Barrier Discharge, which employs a micro-pulse design to maintain surface
temperatures below 40°C.%% %5 In particular, non-thermal inductive discharge plasma treatment
holds significant potential for the comprehensive removal of extensive biofilms attached to
implants, making it a promising approach for applications in the treatment of implant-related
infections.’!: ® Additionally, the use of solid-state lasers, such as erbium: yttrium-aluminum-
garnet lasers.%”, the freezing nitrogen ethanol composite, commonly used in tumor surgeries®,
and the extracorporeal shock wave therapy has been shown to be effective in disrupting biofilms
around implants in both in vitro and in vivo studies.’” %

In summary, various physical sterilization methods have demonstrated the ability to directly
disrupt biofilms or eliminate bacteria, as well as indirectly enhance the delivery of antibiotics
and other therapeutic agents to infection sites. These innovative approaches hold significant
potential for application in the treatment of orthopaedic infections. However, achieving
substantial bactericidal and biofilm eradicating effects typically requires surpassing specific
energy thresholds, and to date, no clinical trials have validated these methods for their safety and
efficacy in humans. While most physical methods discussed in this systematic review have
demonstrated safety in vitro or in vivo, developing standardized protocols for clinical
implementation and ensuring their safety in human applications remains a critical challenge in
the field that must be addressed through future research and development.
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