
B5: “What are the best preclinical models of orthopaedic infection for the evaluation of 

therapeutic efficacy?” 

Jessica Amber Jennings,  Ezzuddin Abuhussein, Louise Kruse-Jensen, T. Fintan Moriarty, Javad 

Parvizi,  Edward M. Schwarz & Claudia Siverino 

________________________________________________________________________________ 

Response/Recommendation: As with all research on living organisms, the best model is primarily 

determined by the hypothesis to be tested.  Species studied to address questions relevant to 

orthopaedic infection range from worms1 to horses2, and general animal welfare rules apply (e.g. 

molecular/mechanistic and initial dose-ranging/therapeutic index studies should be tested in small 

species, while clinically relevant hypotheses of pharmacokinetics/biomechanics/implant designs 

should be tested in larger species).  There has also been a revolution in research tools and outcome 

measures in preclinical models of orthopaedic infection such that the scientific rigor and 

reproducibility of the experimental design now impact the ethics of animal research and the validity 

of conclusions pertaining to therapeutic efficacy.  While there are published reviews that provide 

guidance on species that should be used for questions along the preclinical spectrum 3-5, work is 

required to optimize an ideal experimental design based on: 1) 

the principles of the 3Rs (Replacement, Reduction and Refinement) for animal research, 2) currently 

available technologies to achieve the desired scientific rigor of the conclusions (pilot vs. definitive 

preclinical evidence), and 3) the feasibility of the approaches to allow reproducibility by other 

investigators in the field.  To satisfy these current scientific standards, the best preclinical models of 

therapeutic efficacy must include quantification of the pathogenic inoculum, evidence of infection 

prior to treatment, and quantification of the pathogenic burden at the prospective endpoint.  Superior 

studies also include statistically powered longitudinal outcomes (e.g. radiology, serology, 

bioluminescent imaging) and ex vivo analyses (e.g. histology, microbiology, biochemistry, molecular 

biology). 

Level of Evidence: Strong 

Delegate Vote: Agree: [% vote], Disagree: [%], Abstain: [%] 

________________________________________________________________________________ 

Rationale: We interpreted “best” to imply most ethical, rigorous, and reproducible.  As there are no 

validated in silico (computational) or in vitro “preclinical models of orthopaedic infection” we only 

considered non-human vertebrae animal models.  A comprehensive literature search was conducted 

using the search words ““Prosthesis-Related Infections, orthopaedic infection, osteomyelitis, joint 

infection, PJI, Animal Experimentation, treatment efficacy, therapeutic evaluation, biofilm 

eradication” within PubMed and Embase, which initially identifed  1749 potentially relevant unique 

studies, screened by two independent reviewers, of which 422 were selected for full-text review and 

168 were included for evaluation. To focus on the question of “therapy efficacy” only primary 

research articles were included, and all studies that did not have an outcome measure to confirm 

establishment of chronic infection followed by randomization into control vs. treatment group(s) were 

excluded (animal modelling and prophylactic treatment studies were excluded).  We also deemed that 

contemporary/state-of-the-art methodologies are the “best”, and thus excluded paper published prior 

to 2010.   

Mouse Models: Eleven publications that met the inclusion criteria used murine models6-16.  All 

studies evaluated S. aureus bone infection.  Inoculations ranged from 103 to 108 CFU administered 

via a contaminated implant (n=8), or direct injection into the blood, joint, or bone marrow.  All studies 

enumerated CFU on implants and bone tissues.  Most studies used bioluminescent strains (Xen29, 

Xen36, USA300) and monitored the infection longitudinally via bioluminescent imaging (BLI).  Two 

studies used BLI to randomize the mice to treatment (n=10).  Most studies used micro-CT as an 



outcome measure of osteolysis.  Most studies performed H&E, Gram, and TRAP-stained histology 

to confirm the infection, quantify abscesses, and osteoclasts, respectively.  Some studies used electron 

microscopy to assess biofilm on implants and within the osteocyte lacuno-canalicular network 

(OLCN) of infected bone.  Few studies weighed the mice or performed serology, hematology, or 

molecular analyses.  One study used a transgenic mouse to quantify green fluorescent protein positive 

myeloid cells as an outcome.  Taken together, the “best” murine models to assess treatment efficacy 

use a standardized inoculation of bioluminescent bacteria and perform longitudinal BLI to assess in 

vivo growth and to randomize mice to treatment groups.  They also perform ex vivo studies at 

prospective endpoints to quantify CFU on the implant and bone tissues, quantify osteolysis via micro-

CT, and histomorphometry to assess bacterial biofilms, bone, bone cells and immune cells.  

Rat Models: Fifty publications utilizing rat models met the inclusion criteria and were included in 

the review 17-64. The two primary rat species used were Wistar and Sprague Dawley rats. Among the 

studies, 66% used male rats, 18% used female rats, and 8% did not report the sex of the rats. The 

most common defect sites were the femur and tibia, along with their respective intramedullary 

channels. Notably, only one study focused on the spine 49, while a few examined the knee joints 27; 33; 

60; 61. The studies primarily utilized pin models in the tibia or femur, alongside fracture models that 

were fixed with stainless steel Kirschner wires (K-wires). Only a limited number of studies employed 

stainless steel plates for fracture fixation 33; 46; 63. Other types of implants included 

polyetheretherketone (PEEK) screws 19; 47; 57; 58 and cement-coated rods 49. The predominant 

microorganism tested was Staphylococcus aureus, with 88% of the studies using either methicillin-

sensitive S. aureus (MSSA) or methicillin-resistant S. aureus (MRSA). Ten percent of the studies 

involved S. epidermidis, and only one study utilized both 18. S. epidermidis was mainly used in rat 

models with PEEK screws 19; 57; 58. The initial inoculation of bacteria ranged from 103 to 108 CFU per 

animal. Infection was established by either inoculating the bacterial solution directly into the defect 

or intramedullary channel, or by inserting a pre-inoculated pin or K-wire into the defect site. The 

inoculation volume varied between 10 to 100 µL. As an outcome measure, all studies included 

bacteriological assessments of the retrieved tissue to enumerate bacterial survival. However, not all 

studies conducted a comprehensive bacteriology assessment, as some did not analyze all the tissues 

involved or failed to report the exact methodology used for quantification. Radiography and micro-

CT were frequently employed to evaluate bone healing or bone resorption. Histopathological analyses 

were also conducted to assess the presence of bacteria and/or immune cell responses. A limited 

number of studies quantified antibiotic concentrations in the serum, bone, and intramedullary space. 

Additionally, cytokine levels, such as IL-6 or TNF-α, were measured in the serum of the infected 

animals. 

Rabbit Models:  Twelve publications used rabbit models, primarily with New Zealand White rabbits 

due to their docility and similarity to humans in their reaction to disease and medications.  The most 

common defect site was the tibia, due to not requiring internal or external fixation. Less common 

sites included the radius65, femur66; 67 and the mandible68; 69. The most common microorganism was 

MRSA, followed by MSSA, with fewer studies investigating gram negative microorganisms like 

Klebsiella pneumoniae70 and E. coli.71 Implants used to initiate implant-associated infection included 

K-wires, Jamshidi needles, and custom made titanium implants, with inoculation amounts ranging 

from 105 to 109 CFU.  In addition to bacteriology, radiography scoring has been established as an 

effective measure of bone healing, although there is some debate about the most appropriate scoring 

systems.72  Histomorphometric scoring is also common to assess healing and inflammation in the 

defect site.  Some studies measured blood markers, MicroCT, weight, mortality, and systemic 

concentration of antibiotics as additional outcome measures. The “best” rabbit models include at 

minimum bacteriology, an established radiographic scoring system, and an established 

histomorphometric scoring system.  

Pig Models: Four publications that met the inclusion criteria used porcine models30; 73-75. All used 

immature, female pigs of ~40 kg body weight. The bone infection was established by 104 CFU of S. 



aureus via direct injection or together with insertion of a small non-functional steel implant. Bone 

infection development was confirmed after 7 days by microbiological analyses of infected bone tissue 

and sonication of implants. Following the therapeutic intervention period and euthanasia the exact 

same analyses was conducted. This allowed CFU reduction of the established infection to be the 

primary outcome for assessing therapeutic efficacy. This approach was feasible as a reliable human-

scale revision surgery has been included in all tested therapeutic interventions of pigs30; 73; 74. Due to 

the size of pigs, intravital imaging of the infection development is difficult. If revision surgery is not 

a part of the therapeutic intervention the infection development should be confirmed by other analyses 

like imaging techniques and euthanasia of infection controls. Like sheep, pigs allow robust preclinical 

testing of treatment modalities included in one-stage revision of osteomyelitis, such as surgical 

approaches, introduction of biomaterials, implant coatings, and plastic surgery. Due to the increased 

use of sheep and pigs in bone infection research, there should be even more focus on obtaining better 

knowledge about their bone physiology, immune response and metabolism of antimicrobials in 

comparison to humans. 

Sheep Models: Five publications that met the inclusion criteria used sheep models. Four of 

these studies used female sheep, and it was not reported in the fifth. Three studies used the tibia (all 

with intramedullary nails, but without creating fractures or osteotomy) and 2 in the femur (one study 

used a prosthetic hip stem, and one study used a cylindrical stainless-steel plug 20 mm long and 8 

mm in diameter). All studies evaluated S. aureus bone infection, either MSSA or MRSA. No 

bioluminescent strains were used in any study. Inocula ranged from 107 to 109 CFU, added either as 

a liquid suspension to the intramedullary channel or implant or deposited on a collagen fleece and 

inserted into the intramedullary channel adjacent to the implant. All studies performed a 

microbiological assessment, four of them provided quantitative results, while one study cultured and 

identified the bacteria without quantifying bacterial load. All studies used radiography to evaluate 

bone changes due to infection. Only one study used histopathology to assess inflammation (acute and 

chronic), bone necrosis, and new bone formation.76 No sheep study used histopathology to identify 

bacteria in tissues. All studies performed a routine and regular clinical examination of observations 

such as weight and behavior changes, limping, and local signs of infection. Three studies used a 

dedicated scoring system, although it was not fully described. 77-79  The remaining two did not disclose 

if a scoring system was used to monitor animal welfare. Hematology was also performed. In one 

study, WBC, CRP, and ESR were measured but discontinued due to lack of correlation with infection 

status.79 Similarly, Foster et al. did not measure hematological markers for the same reason. Alegrete 

et al. performed regular hematology assessments including WBC and CRP, with again WBC not 

yielding differential results based on infection status, however, this study did show CRP to differ 

between groups.76 Boot et al and Nakahara et al did not present any hematology data 76; 80.Due to the 

small number of sheep studies, it is challenging to identify the best model. It is not entirely clear why 

histopathology is less common in sheep models compared to smaller animals; however, it may be 

linked to the large area across which the infection is present, and the difficulty in identifying the real 

nidus of the infection. In the only sheep study where the infection was localized to a preformed defect, 

and thus easily identifiable, histopathology was performed. Another improvement needed for the 

sheep models is to identify improved blood biomarkers to monitor disease progression or infection 

burden. Animal welfare is reliant on clinical observations such as general behavior, lameness, and 

wound appearance.    
For all the animal models described above, to meet the 3R standards, adequate power to detect 

significant differences in treatment effects are essential. For murine animal models, the number of 

animals per group ranged from 3 - 20 with the median being 10.   With larger animal models, costs 

of animals and care must be balanced with including enough animals to detect treatment effects.  For 

rabbits, animal number per group ranged from 3 to 23, with the median being 12.  For pigs and sheep, 

animal numbers per group ranged from 3 to 10, with the median being 6.  An overwhelming majority 

of the studies only included single sex of animal, making it difficult to determine whether sex 

differences exist in treatment strategies for MSKI.    



The “best” studies also describe measures to minimize bias in outcome evaluation, including 

balancing of infection status at treatment start, randomization of animals into treatment groups, and 

blinding of treatment groups to both surgeons at the time of intervention and outcome evaluators.  

Quality assessment of the extracted articles determined that 60% of studies had adequate 

randomization described, 48% of studies had appropriate descriptions of blinded evaluators of 

outcome, and only 25% described blinding of the surgeon to treatment group.    

________________________________________________________________________________ 
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