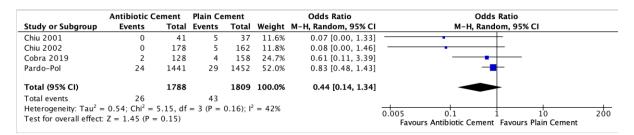
HK6: Does the use of antibiotic-impregnated polymethyl methacrylate cement reduce the incidence of infection in patients undergoing primary joint arthroplasty?

Ernesto Guerra-Farfán, Thiago Sampaio Busato, Brett R. Levine, Jean-Yves Jenny, Levent Bayam, Elysia Masters, Ron E. Delanois, Michael I Solomon, David S Choon, Seper Ekhtiari

Response/Recommendation: The evidence among lower-level comparative studies is mixed, with some studies suggesting antibiotic-impregnated cement reduces the risk of infection in patients undergoing primary joint arthroplasty. However, pooling of the available Level 1 evidence, as well as pooled registry data, does not support a reduction in infection risk in primary total joint arthroplasty.


Level of Evidence: Moderate

Delegate Vote:

Rationale:

A total of 32 comparative studies were identified and published between 1990 and 2024 across 21 different countries (1–31). Nearly five million patients were included in total (4,943,801 joints in 4,943,768 patients). Of the studies reporting sex distribution, 37.3% were women. There were a total of six randomized controlled trials (RCTs), one prospective cohort study, 22 retrospective cohort studies, one case-control study, and one economic Markov model analysis. One study was a longer-term follow-up of an earlier published RCT (8).

The majority of studies included only total knee arthroplasty cases, while six studies included hip arthroplasty cases. Data from four RCTs comparing antibiotic-laden bone cement (ALBC) versus plain cement in primary total knee arthroplasty were pooled for a meta-analysis. The results of the meta-analysis revealed no significant difference in infection rates between the ALBC group and the plain cement group (**Figure 1**).

The evidence among lower-level comparative studies was mixed. There were twelve studies that demonstrated no significant difference between ALBC and plain cement in primary hip and knee arthroplasty (3,12,15,18–21,23–25,28,29), while seven studies demonstrated a significant reduction in infection rates with the use of ALBC (10,11,14,16,17,22,31). Only one study found an increased risk of infection with the use of ALBC (27).

It is worth highlighting the findings from various registry and large database studies as well. A report utilizing data from the United Kingdom's National Joint Registry (17), as well as one from a large national insurance registry in the United States (10), found significant benefits in terms of infection prevention with the use of ALBC. However, three other registry-based studies did not find a difference between ALBC and plain cement (12,19,23). Importantly, one of these studies combined data from 14 different high-quality national or

regional arthroplasty registries, with a total sample size of over two million total knee arthroplasty patients (23).

The evidence regarding the economics of antibiotic-impregnated cement is also mixed. Of the two studies evaluating the economics of routine ALBC use, one found that routine antibiotic cement use was not cost-effective (26), while the other found that it was only potentially cost-effective if the antibiotics were added by the surgeon rather than commercially available premixes (27).

Overall, there is a lack of evidence to support the routine use of ALBC in primary total joint arthroplasty. Data for total hip arthroplasty is relatively limited, while there are more studies available on total knee arthroplasty, including some high-quality RCT and registry data. The overall conclusion, whether based on pooling of data or an overall qualitative synthesis of the available literature, does not provide convincing evidence of the efficacy of ALBC in preventing infection in primary total hip and knee arthroplasty. The caveat that must be kept in mind is that with the overall rarity of prosthetic joint infection and the very large sample sizes required to answer this question directly (i.e., via RCT), many studies are likely underpowered to definitively answer the question. Is it out of the scope of answering this question to say something like: Need to re-write this--? Additionally, there are limited, but present concerns regarding rates of aseptic loosening and antibiotic resistance when utilizing ALBC routinely for primary total hip and knee arthroplasty procedures.

REFERENCES

- 1. Blanco JF, Díaz A, Melchor FR, da Casa C, Pescador D. Risk factors for periprosthetic joint infection after total knee arthroplasty. Arch Orthop Trauma Surg. 2020 Feb 1;140(2):239–45.
- 2. Merollini KMD, Crawford RW, Whitehouse SL, Graves N. Surgical site infection prevention following total hip arthroplasty in Australia: A cost-effectiveness analysis. Am J Infect Control. 2013;41(9).
- 3. Gandhi R, Razak F, Pathy R, Davey JR, Syed K, Mahomed NN. Antibiotic Bone Cement and the Incidence of Deep Infection after Total Knee Arthroplasty. Journal of Arthroplasty. 2009 Oct;24(7):1015–8.
- 4. McQueen MM, Hughes SPF, May P, Verity L. Cefuroxime in total joint arthroplasty. J Arthroplasty. 1990;5(2).
- 5. Chiu FY, Lin CFJ, Chen CM, Lo WH, Chaung TY. Cefuroxime-impregnated cement at primary total knee arthroplasty in diabetes mellitus. Journal of Bone and Joint Surgery Series B. 2001;
- 6. Chiu FY, Chen CM, Lin CFJ, Lo WH. Cefuroxime-impregnated cement in primary total knee arthroplasty: A prospective, randomized study of three hundred and forty knees. Journal of Bone and Joint Surgery Series A. 2002;
- 7. Cobra HA de AB, Mozella A de P, Labronici PJ, Cavalcanti AS, Guimarães JAM. Infection after primary total knee arthroplasty: a randomized controlled prospective study of the addition of antibiotics to bone cement. Rev Bras Ortop (Sao Paulo). 2021;56(5).
- 8. Pardo-Pol A, Fontanellas-Fes A, Pérez-Prieto D, Sorli L, Hinarejos P, Monllau JC. The Use of Erythromycin and Colistin Cement in Total Knee Arthroplasty Does Not Reduce the Incidence of Infection: A Randomized Study in 2,893 Knees With a 9-year Average Follow-Up. Vol. 39, Journal of Arthroplasty. Elsevier B.V.; 2024. p. 2280–4.
- 9. Hinarejos P, Guirro P, Leal J, Montserrat F, Pelfort X, Sorli ML, et al. The use of erythromycin and colistin-loaded cement in total knee arthroplasty does not reduce the incidence of infection: A prospective randomized study in 3000 knees. Journal of Bone and Joint Surgery. 2013 May 1;95(9):769–74.
- 10. Jameson SS, Asaad A, Diament M, Kasim A, Bigirumurame T, Baker P, et al. Antibiotic-loaded bone cement is associated with a lower risk of revision following primary cemented total knee arthroplasty: An analysis of 731 214 cases using national joint registry data. Bone and Joint Journal. 2019;101-B(11).
- 11. Leong JW, Cook MJ, O'Neill TW, Board TN. Is the use of antibiotic-loaded bone cement associated with a lower risk of revision after primary total hip arthroplasty? Bone Joint J. 2020;102-B(8).
- 12. Nourie BO, Cozzarelli NF, Krueger CA, Donnelly PC, Fillingham YA. Antibiotic Laden Bone Cement Does Not Reduce Acute Periprosthetic Joint Infection Risk in Primary Total Knee Arthroplasty. Journal of Arthroplasty. 2024 Sep 1;39(9):S229–34.
- 13. Engesæter LB, Lie SA, Espehaug B, Furnes O, Vollset SE, Havelin LI. Antibiotic prophylaxis in total hip arthroplasty: Effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0-14 years in the Norwegian Arthroplasty Register. Acta Orthop Scand. 2003;
- 14. Bendich I, Zhang N, Barry JJ, Ward DT, Whooley MA, Kuo AC. Antibiotic-Laden Bone Cement Use and Revision Risk After Primary Total Knee Arthroplasty in U.S. Veterans. Journal of Bone and Joint Surgery. 2020 Nov 18;102(22):1939–47.

- 15. Turhan S. Does the Use of Antibiotic-Loaded Bone Cement Have an Effect on Deep Infection in Primary Total Knee Arthroplasty Practice? Surg Infect (Larchmt). 2019 Apr 1;20(3):244–6.
- 16. Sergi GG, Borja VR, Jesus C, Pedro H, Joan Carles M, Xavier P. Antibiotic-loaded bone cement is associated with a reduction of the risk of revision of total knee arthroplasty: Analysis of the Catalan Arthroplasty Register. Knee Surgery, Sports Traumatology, Arthroscopy. 2024 Jan 1;
- 17. Chan JJ, Robinson J, Poeran J, Huang HH, Moucha CS, Chen DD. Antibiotic-Loaded Bone Cement in Primary Total Knee Arthroplasty: Utilization Patterns and Impact on Complications Using a National Database. Journal of Arthroplasty. 2019;34(7).
- 18. Namba RS, Chen Y, Paxton EW, Slipchenko T, Fithian DC. Outcomes of Routine Use of Antibiotic-Loaded Cement in Primary Total Knee Arthroplasty. Journal of Arthroplasty. 2009 Sep;24(6 SUPPL.):44–7.
- 19. Namba RS, Prentice HA, Paxton EW, Hinman AD, Kelly MP. Commercially Prepared Antibiotic-Loaded Bone Cement and Infection Risk Following Cemented Primary Total Knee Arthroplasty. Journal of Bone and Joint Surgery. 2020 Nov 18;102(22):1930–8.
- 20. Anis HK, Sodhi N, Faour M, Klika AK, Mont MA, Barsoum WK, et al. Effect of Antibiotic-Impregnated Bone Cement in Primary Total Knee Arthroplasty. Journal of Arthroplasty. 2019 Sep 1;34(9):2091-2095.e1.
- 21. Alhammad AM, Almangour TA, Almasoudi I, Alalayet W, Almuqbil M, Alsowaida YS, et al. Effectiveness of antibiotic-loaded bone cement in total joint arthroplasty at a tertiary medical center: A retrospective cohort study. Saudi Pharmaceutical Journal. 2023 Sep 1;31(9).
- 22. Sanz-Ruiz P, Matas-Diez JA, Sanchez-Somolinos M, Villanueva-Martinez M, Vaquero-Martín J. Is the Commercial Antibiotic-Loaded Bone Cement Useful in Prophylaxis and Cost Saving After Knee and Hip Joint Arthroplasty? The Transatlantic Paradox. Journal of Arthroplasty. 2017;32(4).
- 23. Leta TH, Lie SA, Fenstad AM, Lygre SHL, Lindberg-Larsen M, Pedersen AB, et al. Periprosthetic Joint Infection After Total Knee Arthroplasty With or Without Antibiotic Bone Cement. JAMA Netw Open. 2024 May 23;7(5):E2412898.
- 24. Qadir R, Sidhu S, Ochsner JL, Meyer MS, Chimento GF. Risk stratified usage of antibiotic-loaded bone cement for primary total knee arthroplasty: Short term infection outcomes with a standardized cement protocol. Journal of Arthroplasty. 2014;29(8).
- 25. Hoskins T, Shah JK, Patel J, Mazzei C, Goyette D, Poletick E, et al. The cost-effectiveness of antibiotic-loaded bone cement versus plain bone cement following total and partial knee and hip arthroplasty. J Orthop. 2020 Jul 1;20:217–20.
- 26. Yayac M, Rondon AJ, Tan TL, Levy H, Parvizi J, Courtney PM. The Economics of Antibiotic Cement in Total Knee Arthroplasty: Added Cost with No Reduction in Infection Rates. Journal of Arthroplasty. 2019;34(9).
- 27. Gutowski CJ, Zmistowski BM, Clyde CT, Parvizi J. The economics of using prophylactic antibiotic-loaded bone cement in total knee replacement. Bone and Joint Journal. 2014;96 B(1).
- 28. Bohm E, Zhu N, Gu J, De Guia N, Linton C, Anderson T, et al. Does adding antibiotics to cement reduce the need for early revision in total knee arthroplasty? Knee. In: Clinical Orthopaedics and Related Research. Springer New York LLC; 2014. p. 162–8.
- 29. Cieremans D, Muthusamy N, Singh V, Rozell JC, Aggarwal V, Schwarzkopf R. Does antibiotic bone cement reduce infection rates in primary total knee arthroplasty? European Journal of Orthopaedic Surgery and Traumatology. 2023 Dec 1;33(8):3379–85.

- 30. Engesæter L, Espehaug B, Lie S, Furnes O, Havelin L. Does cement increase the risk of infection in primary total hip arthroplasty? Revision rates in 56,275 cemented and uncemented primary THAs followed for 0-16 years in the Norwegian Arthroplasty Register. Acta Orthop. 2006 Jun 1;77(3):351–8.
- 31. Eveillard M, Mertl P, Tramier B, Eb F. Effectiveness of Gentamicin-Impregnated Cement in the Prevention of Deep Wound Infection After Primary Total Knee Arthroplasty. Infect Control Hosp Epidemiol. 2003;24(10).