

Are There Any Technological Advances in Creating Smart Antibiotic Carriers in the Fight Against Biofilms?

John L. Hamilton, Adrienn Markovics, Lauren B. Priddy, & Edward M. Schwarz

John Hamilton, USA

Adrienn Markovics, USA

Lauren Priddy, USA

Edward Schwarz, USA

Why this topic is important

- Bacterial biofilms contribute to
 orthopedic implant failures and chronic
 musculoskeletal infections, hindering
 antibiotic penetration and immune
 responses.
- Innovative drug delivery systems can enhance antibiotic penetration and achieve localized drug release at bacterial biofilms.

Received: 29 September 2023 | Accepted: 28 November 2023

OOI: 10.1002/jor.25765

SPECIAL ISSUE ARTICLE

2023 International Consensus Meeting on musculoskeletal infection: Summary from the treatment workgroup and consensus on treatment in preclinical models

```
Jessica Amber Jennings<sup>1</sup> Jacobus J. Arts<sup>2,3</sup> Jessica Amber Jennings<sup>1</sup> Jennings<sup>1</sup> Jessica Amber Jennings<sup>1</sup> Jessica Amber Jennings<sup>1</sup> Jessica Amber Jennings<sup>1</sup> Jennings<sup>1</sup>
Volker Alt<sup>4</sup> | Nicholas Ashton<sup>5,6</sup> | Susanne Baertl<sup>4</sup> | Sanjib Bhattacharyya<sup>7,8</sup>
Jarrett D. Cain<sup>9</sup> | Yogita Dintakurthi<sup>1</sup> | Paul Ducheyne<sup>7</sup> | Hannah Duffy<sup>5,6</sup>
 Robert Falconer<sup>5,6</sup> | Malley Gautreaux<sup>10</sup> | Sofia Gianotti<sup>11</sup> |
John L. Hamilton<sup>11</sup> | Annika Hylen<sup>5,6</sup>   | Sanne van Hoogstraten<sup>2</sup> |
Andres Libos 12,13,14
                                                                                                           Adrienn Markovics<sup>11</sup>  Vuyisa Mdingi<sup>15</sup>
Emily C. Montgomery<sup>1</sup> | Mario Morgenstern<sup>16</sup> | William Obremskey<sup>12</sup>
                                                                                                                 Jermiah Tate<sup>1</sup> | Youliang Ren<sup>17,18</sup> |
Lauren B. Priddy<sup>10</sup>
Benjamin Ricciardi<sup>17</sup>
                                                                                                                  Luke J. Tucker<sup>10</sup> | Jason Weeks<sup>17,18</sup>
                                                                                                      Niels Vanvelk<sup>13</sup>
                                                                                                           Edward M. Schwarz<sup>17,18</sup>  T. Fintan Moriarty<sup>15</sup>
Noreen Hickok<sup>21</sup>
```

The Role of Biofilm in Orthopedic Implant Failures and Chronic Musculoskeletal Infections

Cobb, L. H., et al. "Therapeutics and delivery vehicles for local treatment of osteomyelitis," J Orthop Res, 2020

Slow penetration

Antibiotic (yellow) may fail to penetrate beyond the surface layers of the biofilm

Resistant phenotype

Some of the bacteria may differentiate into a protected phenotypic state (green)

Altered microenvironment

In zones of nutrient depletion or waste product accumulation (red), antibiotic action may be antagonised

Biofilm Resistance Mechanisms

Blocked penetration:

Antibiotics inactivated or bound at biofilm surface

Microenvironment:

Low oxygen, low pH, and nutrient depletion reduce drug activity

Dormant cells:

A subset of bacteria enter a highly protected, non-growing state

Stewart & Costerton, "Antibiotic Resistance of Bacteria in Biofilms," The Lancet, 2001

Literature Review/Process

- Number of articles retrieved: 66
- ❖Screening: 66
- Final number of publications: 30

Stimuli-Responsive Smart Antibiotic Carriers

Smart carriers that respond to stimuli:

- pH
- Enzyme
- ROS
- Light
- Heat
- Ultrasound
- Magnetic field

 MNPs-G⁺ (gentamicin-loaded magnetic nanoparticles + magnetic field) showed the highest S. aureus biofilm-killing efficacy (~60%)

> Quan et al., "Homogeneous Distribution of Magnetic, Antimicrobial-Carrying Nanoparticles Enhances Biofilm-Killing," ACS Biomater Sci Eng, 2020

Smart Antibiotic Carriers That Enhance Biofilm Targeting

Carriers that target biofilms:

- Enhance biofilm penetration
- Bind to tissue with biofilm
- Bind to biofilm

Vancomycin-LCH-NPs (lipid-coated nanoparticles)

Vancomycin

- Vancomycin-LCH-NPs (lipid-coated nanoparticles) showed widespread MRSA biofilm cell death (red) at low doses
- Free vancomycin had minimal effect—most cells remained alive (green)

Smart Antibiotic Carriers that Enhance Biofilm Targeting

Carriers that target biofilms:

- Enhance biofilm penetration
- Bind to tissue with biofilm
- Bind to biofilm

Bone-Targeted Bisphosphonate (BP)-Antibiotic Delivery

A: *S. aureus* invades bone canaliculi — inaccessible to standard antibiotics.

B: Fluorescent BP accumulates at infected bone surfaces.

C: Bacterial death after BP-antibiotic treatment.

D: BP-antibiotic binds bone with high affinity.

E: Infection triggers drug release via linker cleavage.

F: Local antibiotic kills adjacent biofilm bacteria.

Major Limitations

- Only one liposomal antibiotic carrier has been clinically validated for bacterial infection treatment—and it is approved for use in a non-orthopedic setting.
- A gold-standard, minimally invasive biomarker for biofilm burden in clinical settings is needed for longitudinal evaluation of therapeutic efficacy.

Question:

*Are there any technological advances in creating smart antibiotic carriers in the fight against biofilms?

Response:

Extensive preclinical evidence supports innovations that enhance antibiotic delivery, biofilm penetration, and overall antibiofilm efficacy. Clinical validation remains necessary.

Level of Evidence: Strong

Kumar et al., "Advances in Nanotechnology for Biofilm Inhibition," ACS Omega, 2023


```
Vote:
```

Agree n=33; 100%

Disagree 0

Abstain 0