Are There Any Technological Advances in Creating Smart Antibiotic Carriers in the Fight Against Biofilms? John L. Hamilton, Adrienn Markovics, Lauren B. Priddy, & Edward M. Schwarz John Hamilton, USA **Adrienn Markovics, USA** Lauren Priddy, USA **Edward Schwarz, USA** ### Why this topic is important - Bacterial biofilms contribute to orthopedic implant failures and chronic musculoskeletal infections, hindering antibiotic penetration and immune responses. - Innovative drug delivery systems can enhance antibiotic penetration and achieve localized drug release at bacterial biofilms. Received: 29 September 2023 | Accepted: 28 November 2023 OOI: 10.1002/jor.25765 #### SPECIAL ISSUE ARTICLE 2023 International Consensus Meeting on musculoskeletal infection: Summary from the treatment workgroup and consensus on treatment in preclinical models ``` Jessica Amber Jennings¹ Jacobus J. Arts^{2,3} Jessica Amber Jennings¹ Jennings¹ Jessica Amber Jennings¹ Jessica Amber Jennings¹ Jessica Amber Jennings¹ Jennings¹ Volker Alt⁴ | Nicholas Ashton^{5,6} | Susanne Baertl⁴ | Sanjib Bhattacharyya^{7,8} Jarrett D. Cain⁹ | Yogita Dintakurthi¹ | Paul Ducheyne⁷ | Hannah Duffy^{5,6} Robert Falconer^{5,6} | Malley Gautreaux¹⁰ | Sofia Gianotti¹¹ | John L. Hamilton¹¹ | Annika Hylen^{5,6} | Sanne van Hoogstraten² | Andres Libos 12,13,14 Adrienn Markovics¹¹ Vuyisa Mdingi¹⁵ Emily C. Montgomery¹ | Mario Morgenstern¹⁶ | William Obremskey¹² Jermiah Tate¹ | Youliang Ren^{17,18} | Lauren B. Priddy¹⁰ Benjamin Ricciardi¹⁷ Luke J. Tucker¹⁰ | Jason Weeks^{17,18} Niels Vanvelk¹³ Edward M. Schwarz^{17,18} T. Fintan Moriarty¹⁵ Noreen Hickok²¹ ``` # The Role of Biofilm in Orthopedic Implant Failures and Chronic Musculoskeletal Infections Cobb, L. H., et al. "Therapeutics and delivery vehicles for local treatment of osteomyelitis," J Orthop Res, 2020 #### Slow penetration Antibiotic (yellow) may fail to penetrate beyond the surface layers of the biofilm #### Resistant phenotype Some of the bacteria may differentiate into a protected phenotypic state (green) #### Altered microenvironment In zones of nutrient depletion or waste product accumulation (red), antibiotic action may be antagonised #### **Biofilm Resistance Mechanisms** #### **Blocked penetration:** Antibiotics inactivated or bound at biofilm surface #### **Microenvironment:** Low oxygen, low pH, and nutrient depletion reduce drug activity #### **Dormant cells:** A subset of bacteria enter a highly protected, non-growing state Stewart & Costerton, "Antibiotic Resistance of Bacteria in Biofilms," The Lancet, 2001 ### Literature Review/Process - Number of articles retrieved: 66 - ❖Screening: 66 - Final number of publications: 30 ### Stimuli-Responsive Smart Antibiotic Carriers # Smart carriers that respond to stimuli: - pH - Enzyme - ROS - Light - Heat - Ultrasound - Magnetic field MNPs-G⁺ (gentamicin-loaded magnetic nanoparticles + magnetic field) showed the highest S. aureus biofilm-killing efficacy (~60%) > Quan et al., "Homogeneous Distribution of Magnetic, Antimicrobial-Carrying Nanoparticles Enhances Biofilm-Killing," ACS Biomater Sci Eng, 2020 ### **Smart Antibiotic Carriers That Enhance Biofilm Targeting** #### **Carriers that target biofilms:** - Enhance biofilm penetration - Bind to tissue with biofilm - Bind to biofilm Vancomycin-LCH-NPs (lipid-coated nanoparticles) Vancomycin - Vancomycin-LCH-NPs (lipid-coated nanoparticles) showed widespread MRSA biofilm cell death (red) at low doses - Free vancomycin had minimal effect—most cells remained alive (green) ### **Smart Antibiotic Carriers that Enhance Biofilm Targeting** #### **Carriers that target biofilms:** - Enhance biofilm penetration - Bind to tissue with biofilm - Bind to biofilm ### Bone-Targeted Bisphosphonate (BP)-Antibiotic Delivery **A:** *S. aureus* invades bone canaliculi — inaccessible to standard antibiotics. **B:** Fluorescent BP accumulates at infected bone surfaces. C: Bacterial death after BP-antibiotic treatment. **D:** BP-antibiotic binds bone with high affinity. E: Infection triggers drug release via linker cleavage. F: Local antibiotic kills adjacent biofilm bacteria. ### **Major Limitations** - Only one liposomal antibiotic carrier has been clinically validated for bacterial infection treatment—and it is approved for use in a non-orthopedic setting. - A gold-standard, minimally invasive biomarker for biofilm burden in clinical settings is needed for longitudinal evaluation of therapeutic efficacy. ## **Question:** *Are there any technological advances in creating smart antibiotic carriers in the fight against biofilms? # **Response:** Extensive preclinical evidence supports innovations that enhance antibiotic delivery, biofilm penetration, and overall antibiofilm efficacy. Clinical validation remains necessary. Level of Evidence: Strong Kumar et al., "Advances in Nanotechnology for Biofilm Inhibition," ACS Omega, 2023 ``` Vote: ``` Agree n=33; 100% Disagree 0 Abstain 0