G74: What are risk factors for development of Mycobacterial infections?

Atthakorn Jarusriwanna, Jose Baeza-Oliete, Jasmin Ciriviri, Yoshi Djaja, Neil Jenkins, Lee Jeys, Priscila Rosalba Oliveira, Toshibumi Taniguchi

Response/Recommendation:

Patients who are immunocompromised, receiving long-term corticosteroid or immunosuppressive therapy, have multiple medical comorbidities, a history of either pulmonary or extrapulmonary tuberculosis, or a history of repeated surgeries are at increased risk of developing Mycobacterial infections.

Strength of recommendation: Moderate

Delegate Vote:

Rationale:

Mycobacterial infections in periprosthetic joint infection (PJI) are rare and occur infrequently [1-4]. The Mycobacterial species associated with PJIs can be classified into two groups. The first is *M. tuberculosis* complex, a pathogen predominantly associated with lateonset chronic PJI [5]. The second group, Nontuberculous Mycobacterial (NTM) infections, is further subdivided into two categories. The first category, rapidly growing Mycobacteria, includes *M. chelonae*, *M. abscessus*, *M. fortuitum*, *M. smegmatis*, and *M. peregrinum*, which are recognized as major pathogens in early-onset PJI. The second category, slow-growing Mycobacteria, comprises species such as *M. avium intracellulare*, *M. kansasii*, and *M. gordonae* [6]. As Mycobacterial infections are an uncommon cause of PJI, diagnostic investigations for their identification are not routinely performed. Nevertheless, in culture-negative PJI cases, atypical microorganisms, particularly Mycobacteria should be considered, and proper diagnosis requires submitting a sample for specialized culture [7]. Therefore, a thorough understanding of the risk factors associated with these infections is essential for accurate detection and effective management.

A systematic review was conducted with inclusion criteria restricted to English-language original articles, including case reports, case series, and retrospective or prospective clinical studies on patients with PJI of the hip or knee caused by Mycobacterial infections, specifically those that identified associated risk factors. A comprehensive literature search of the PubMed and Scopus databases retrieved 1,516 abstracts. After the initial screening, 53 studies were selected for full-text review, of which 23 met the eligibility criteria and were included in the final assessment. The total number of patients across the included studies was 85. Of these, 16 studies were case reports, comprising 18 patients [7, 8, 10, 11, 13-24], while the remaining 7 were retrospective studies, involving 67 patients [2, 4, 6, 9, 12, 25, 26] (Table 1).

Patients with compromised immune status are at increased risk of Mycobacterial infection, particularly those with inflammatory joint diseases or autoimmune disorders undergoing chronic corticosteroid therapy or immunosuppressive treatment [4, 8, 16, 19]. Additionally, individuals with several medical comorbidities such as diabetes, peripheral vascular disease, chronic obstructive pulmonary disease, chronic liver disease, cirrhosis, and renal insufficiency are also at elevated risk [20-22]. Hwang et al. [25] reported that 70% of

patients with Mycobacterial PJI in their series following primary total knee arthroplasty (TKA) were classified as American Society of Anesthesiologists (ASA) grade 3 or 4. Furthermore, systemic immunosuppression due to human immunodeficiency virus (HIV) infection is another significant factor predisposing individuals to atypical infectious diseases, including Mycobacterial infection [17, 18, 26].

A prior history of extrapulmonary or pulmonary tuberculosis may be recognized as a risk factor for PJIs caused by *M. tuberculosis*, as these infections may spread hematogenously and reactivate after a quiescent infection, particularly in individuals with compromised immunity [2, 13]. Wang et al. [24] reported a case of a patient with a prior diagnosis of pulmonary tuberculosis one year before developing chronic knee PJI, in which cultures from debridement yielded *M. tuberculosis*. Similarly, Meyssonnier et al. [2] documented two cases of tuberculous hip PJI, one in a patient with a history of pulmonary tuberculosis and the other in a patient with bone tuberculosis. A systematic review by Kim et al. [27] demonstrated that 20% of patients with *M. tuberculosis* knee PJI in their evaluation had a history of tuberculosis infection. Moreover, some patients with tuberculous PJI were found to have concurrent disseminated tuberculosis affecting other organs at the time of PJI diagnosis [2].

Surgical factors, particularly multiple procedures on the same joint, may increase the risk of Mycobacterial infection. Cansü et al. [10] reported a case of hip PJI caused by *M. tuberculosis* in a patient with a history of four repeated hip surgeries prior to undergoing THA for the treatment of developmental hip dislocation. They hypothesized that the source of infection was external, with potential modes of inoculation including medical staff members or other patients with tuberculosis. Similarly, Maimaiti et al. [6] demonstrated that, in addition to poor health status, multiple comorbidities, or immunocompromised conditions, multiple surgical interventions are a significant risk factor for Mycobacterial PJIs following total hip and knee arthroplasty.

Table 1 Summarizes the included studies.

Author	Year	Country	Study design	No. of	Hip/Knee	Pathogens
				patients	PJI	
Meyssonnier	2019	France	Retrospective	9	Hip	M. tuberculosis
et al. [2]			study		_	
Jitmuang et	2017	Thailand	Retrospective	16	Hip, Knee	M. tuberculosis and
al. [4]			study		_	Rapid growing
						Mycobacteria
Maimaiti et	2023	China	Retrospective	7	Hip, Knee	Nontuberculous

al. [6]			study			Mycobacteria
Pring and	1996	USA	Case report	1	Knee	M. Chelonae
Eckhoff [7]						
Brown et al.	2008	USA	Case report	1	Hip	M. tuberculosis and
[8]						M. Chelonae
Buser et al.	2019	USA	Case-control	9	Hip, Knee	M. goodii and M .
[9]			study			fortuitum
Cansü et al. [10]	2011	Türkiye	Case report	1	Hip	M. tuberculosis
Cheung and Wilson [11]	2008	Australia	Case report	1	Knee	M. fortuitum
Eid et al. [12]	2007	USA	Retrospective study	8	Hip, Knee	Rapid growing Mycobacteria
Harwin et al. [13]	2013	USA	Case report	1	Knee	M. tuberculosis
Henry et al. [14]	2016	USA	Case report	2	Hip, Knee	Rapid growing Mycobacteria
Kim et al.	2017	South	Case report	2	Knee	Rapid growing
[15]		Korea	_			Mycobacteria
Malhotra et al. [16]	2017	India	Case report	1	Hip	M. tuberculosis
Marschall et al. [17]	2008	Switzerland	Case report	1	Knee	M. tuberculosis
McLaughlin et al. [18]	1994	USA	Case report	1	Hip	M. avium intracellulare
Porat and Austin [19]	2008	USA	Case report	1	Knee	M. fortuitum
Rodari et al. [20]	2020	Italy	Case report	1	Hip	M. xenopi
Saccente [21]	2006	USA	Case report	1	Knee	M. fortuitum
Dos Santos et al. [22]	2023	Brazil	Case report	1	Knee	M.senegalense
Shanbhag et al. [23]	2007	UK	Case report	1	Hip	M. tuberculosis
Wang et al. [24]	2007	Taiwan	Case report	1	Knee	M. tuberculosis
Hwang et al.	2021	South	Retrospective	10	Knee	M. tuberculosis and
[25]		Korea	study			M. Fortuitum
Peng et al.	2022	Taiwan	Retrospective	8	Hip, Knee	M. abscessus and
[26]			study			M. Chelonae

References:

- 1. Auñon A, Salar-Vidal L, Mahillo-Fernandez I, Almeida F, Pereira P, Lora-Tamayo J, Ferry T, Souèges S, Dinh A, Escudero R, Menéndez Fernández-Miranda C, Rico A, Rossi N, Esteban J. Prosthetic joint infections caused by *Mycobacterium tuberculosis* complex-an ESGIAI-ESGMYC multicenter, retrospective study and literature review. Microorganisms. 2024;12(5):849.
- 2. Meyssonnier V, Zeller V, Malbos S, Heym B, Lhotellier L, Desplaces N, Marmor S, Ziza JM. Prosthetic joint infections due to Mycobacterium tuberculosis: a retrospective study. Joint Bone Spine. 2019;86(2):239-43.
- 3. Jilani LZ, Istiyak M, Chowdhry M, Bhowmik AK. Implant-associated *Mycobacterium tuberculosis* infection (IMTI) in long-term, well-fixed implants. J Clin Orthop Trauma. 2024;56:102528.
- 4. Jitmuang A, Yuenyongviwat V, Charoencholvanich K, Chayakulkeeree M. Rapidly-growing mycobacterial infection: a recognized cause of early-onset prosthetic joint infection. BMC Infect Dis. 2017;17(1):802.
- 5. Kim SJ, Kim JH. Late onset Mycobacterium tuberculosis infection after total knee arthroplasty: a systematic review and pooled analysis. Scand J Infect Dis. 2013;45(12):907-14.
- 6. Maimaiti Z, Li Z, Xu C, Fu J, Hao L, Chen J, Li X, Chai W. Non-tuberculosis Mycobacterium periprosthetic joint infections following total hip and knee arthroplasty: case series and review of the literature. Orthop Surg. 2023;15(6):1488-97.
- 7. Pring M, Eckhoff DG. Mycobacterium chelonae infection following a total knee arthroplasty. J Arthroplasty. 1996;11(1):115-6.
- 8. Brown A, Grubbs P, Mongey AB. Infection of total hip prosthesis by Mycobacterium tuberculosis and Mycobacterium chelonae in a patient with rheumatoid arthritis. Clin Rheumatol. 2008;27(4):543-5.
- 9. Buser GL, Laidler MR, Cassidy PM, Moulton-Meissner H, Beldavs ZG, Cieslak PR. Outbreak of nontuberculous Mycobacteria joint prosthesis infections, Oregon, USA, 2010-2016. Emerg Infect Dis. 2019;25(5):849-55.
- 10. Cansü E, Erdogan F, Ulusam AO. Incision infection with Mycobacterium tuberculosis after total hip arthroplasty without any primary tuberculosis focus. J Arthroplasty. 2011;26(3):505.e1-3.
- 11. Cheung I, Wilson A. Mycobacterium fortuitum infection following total knee arthroplasty: a case report and literature review. Knee. 2008;15(1):61-3.
- 12. Eid AJ, Berbari EF, Sia IG, Wengenack NL, Osmon DR, Razonable RR. Prosthetic joint infection due to rapidly growing mycobacteria: report of 8 cases and review of the literature. Clin Infect Dis. 2007;45(6):687-94.
- 13. Harwin SF, Banerjee S, Issa K, Kapadia BH, Pivec R, Khanuja HS, Mont MA. Tubercular prosthetic knee joint infection. Orthopedics. 2013;36(11):e1464-9.
- 14. Henry MW, Miller AO, Kahn B, Windsor RE, Brause BD. Prosthetic joint infections secondary to rapidly growing mycobacteria: Two case reports and a review of the literature. Infect Dis (Lond). 2016;48(6):453-60.
- 15. Kim M, Ha CW, Jang JW, Park YB. Rapidly growing non-tuberculous mycobacteria infection of prosthetic knee joints: A report of two cases. Knee. 2017;24(4):869-75.
- 16. Malhotra R, Gautam D, Wahal N. Tuberculous periprosthetic infection precipitated by infliximab therapy. BMJ Case Rep. 2017;2017:bcr2016218726.

- 17. Marschall J, Evison JM, Droz S, Studer UC, Zimmerli S. Disseminated tuberculosis following total knee arthroplasty in an HIV patient. Infection. 2008;36(3):274-8.
- 18. McLaughlin JR, Tierney M, Harris WH. Mycobacterium avium intracellulare infection of hip arthroplasties in an AIDS patient. J Bone Joint Surg Br. 1994;76(3):498-9.
- 19. Porat MD, Austin MS. Bilateral knee periprosthetic infection with Mycobacterium fortuitum. J Arthroplasty. 2008;23(5):787-9.
- 20. Rodari P, Marocco S, Buonfrate D, Beltrame A, Piubelli C, Orza P, Fittipaldo VA, Bisoffi Z. Prosthetic joint infection due to Mycobacterium xenopi: a review of the literature with a new case report. Infection. 2020;48(2):165-71.
- 21. Saccente M. Mycobacterium fortuitum group periprosthetic joint infection. Scand J Infect Dis. 2006;38(8):737-9.
- 22. Dos Santos LS, de Oliveira Sant'Anna L, Theodoro R, Dos Santos NNC, Armond BKL, Seabra LF, Alvim LB, Araújo MRB. Prosthetic joint infection caused by an imipenem-resistant Mycobacterium senegalense. Braz J Microbiol. 2023;54(2):929-34.
- 23. Shanbhag V, Kotwal R, Gaitonde A, Singhal K. Total hip replacement infected with Mycobacterium tuberculosis. A case report with review of literature. Acta Orthop Belg. 2007;73(2):268-74.
- 24. Wang PH, Shih KS, Tsai CC, Wang HC. Pulmonary tuberculosis with delayed tuberculosis infection of total knee arthroplasty. J Formos Med Assoc. 2007;106(1):82-5.
- 25. Hwang BH, Lee SC, Ong A, Ahn HS, Moon SH. Mycobacterial periprosthetic joint infection after primary total knee arthroplasty. Int Orthop. 2021;45(12):3055-62.
- 26. Peng SH, Lee SH, Chen CC, Lin YC, Chang Y, Hsieh PH, Shih HN, Ueng SWN, Chang CH. Nontuberculous mycobacteria peri-prosthetic joint infection: An outcome analysis for two stage revision arthroplasty. J Orthop Surg (Hong Kong). 2022;30(3):10225536221140610.
- 27. Kim SJ, Kim JH. Late onset Mycobacterium tuberculosis infection after total knee arthroplasty: a systematic review and pooled analysis. Scand J Infect Dis. 2013;45(12):907-14.