SH45. Should all cultures be sent for mycobacterial testing?

Shiro Kajiyama MD; John Itamura MD; Jacob Kirsch MD

Methodology: A comprehensive literature review was conducted to identify studies on mycobacterial infections following joint arthroplasty with a particular focus on shoulder arthroplasty. Searches were performed in PubMed and Scopus throughout November 2024 using the terms "arthroplasty," "infection," "shoulder," "prosthetic joint infection," "*Mycobacterium*," "acid-fast bacillus," and "atypical." For this systematic review, we included English-language studies (Level I–IV evidence) that reported causative organisms and culture results in cases of periprosthetic joint infection (PJI) of the shoulder, and excluded non-English articles and studies in nonhumans. This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Seven articles met the inclusion criteria and were reviewed. Given the limited number of articles identified with the specified search terms, additional searches were conducted to identify studies on mycobacterial prosthetic joint infections and the utility of cultures outside of the shoulder literature.

Answer: Unknown.

The frequency of mycobacterial infections as the cause of PJI is low, and there are even fewer cases of mycobacterial PJI of the shoulder. In diagnosing PJI of the hip and knee joints, growing evidence suggests that routine mycobacterial cultures may not be necessary due to the low positivity rates and high costs. However, evidence regarding the necessity of routine mycobacterial cultures for diagnosing shoulder PJI remains insufficient.

Strength of Recommendation: Limited (Evidence is insufficient and does not allow a recommendation for or against the intervention)

<u>Rationale:</u> Reports indicate that mycobacteria are responsible for 0.3% to 1.7% of PJI cases (1-3), with the majority involving the hip and knee joints. Reviews of PJI caused by *Mycobacterium tuberculosis* (TB-PJI) have included only a limited number of shoulder cases (4, 5). For example, Veloci *et al.* (4) reported two shoulder cases among 64 TB-PJI cases (6, 7), and Uhel *et al.* (5) identified one shoulder case among 83 TB-PJI cases, including 70 previously reported cases. Similarly, in a recent report by Auñon *et al.* (8), shoulder cases accounted for 2.9% of the TB-PJI cases. These findings suggest that mycobacterial PJI of the shoulder is even rarer than that of the hip and knee joints.

In diagnosing and performing revision surgeries for PJI in the hip and knee joints, routine mycobacterial cultures are increasingly being considered unnecessary due to the low positivity rates (0%–1.2%) and high associated costs (9-12). Instead, testing is typically recommended for only high-risk cases. Recently, a study focusing on shoulder revision surgeries raised concerns about the utility of routine mycobacterial cultures in such procedures (13). In that study, mycobacterial cultures for 237 shoulder arthroplasty revision cases yielded no positive results. Moreover, atypical cultures, including fungal cultures, accounted for an estimated 53.2% of the total culture-related costs. Based on these findings, the authors concluded that mycobacterial cultures should be reserved for high-risk cases in shoulder revision surgeries.

Nevertheless, with the increasing number of shoulder arthroplasty procedures, including reverse shoulder arthroplasty, the incidence of shoulder PJI is expected to rise. Reports of mycobacterial PJI following reverse shoulder arthroplasty (14-16) have also been increasing. Given these trends, there is currently insufficient evidence to allow for a recommendation on whether routine mycobacterial cultures are necessary for diagnosing shoulder PJI. Further research is warranted to address this issue.

References:

- 1. Aggarwal VK, Bakhshi H, Ecker NU, Parvizi J, Gehrke T, Kendoff D. Organism profile in periprosthetic joint infection: pathogens differ at two arthroplasty infection referral centers in Europe and in the United States. J Knee Surg. 2014; 27: 399-406.
- 2. Peng HM, Zhou ZK, Wang F, Yan SG, Xu P, Shang XF, Zheng J, Zhu QS, Cao L, Weng XS. Microbiology of Periprosthetic Hip and Knee Infections in Surgically Revised Cases from 34 Centers in Mainland China. Infect Drug Resist. 2021; 25; 14:2411-2418.
- 3. Yu Y, Kong Y, Ye J, Wang A, Si W. Microbiological pattern of prosthetic hip and knee infections: a high-volume, single-centre experience in China. J Med Microbiol. 2021; 70(3). doi: 10.1099/jmm.0.001305.
- 4. Veloci S, Mencarini J, Lagi F, Beltrami G, Campanacci DA, Bartoloni A, Bartalesi F. Tubercular prosthetic joint infection: two case reports and literature review. Infection. 2018; 46: 55-68.
- 5. Uhel F, Corvaisier G, Poinsignon Y, Chirouze C, Beraud G, Grossi O, Varache N, Arvieux C, Berre RL, Tattevin P; Groupe d'Epidémiologie et Recherche en Infectiologie Clinique Centre-Ouest (GERICCO). Mycobacterium tuberculosis prosthetic joint infections: A case series and literature review. J Infect. 2019; 78: 27-34.
- 6. Hattrup SJ, Bhagia UT. Shoulder arthroplasty complicated by mycobacterium tuberculosis infection: a case report. J Shoulder Elbow Surg. 2008; 17: e5-7.
- 7. Lederman E, Kweon C, Chhabra A. Late Mycobacterium tuberculosis infection in the shoulder of an immunocompromised host after hemiarthroplasty: a case report. J Bone Joint Surg Am. 2011; 15;93: e67(1-4).
- 8. Auñon A, Salar-Vidal L, Mahillo-Fernandez I, Almeida F, Pereira P, Lora-Tamayo J, Ferry T, Souèges S, Dinh A, Escudero R, Menéndez Fernández-Miranda C, Rico A, Rossi N, Esteban J. Prosthetic Joint Infections Caused by Mycobacterium tuberculosis Complex-An ESGIAI-ESGMYC Multicenter, Retrospective Study and Literature Review. Microorganisms. 2024 24;12: 849.
- 9. Golden M, Moffarah AS, Kerantzas C, Rubin L, O'Bryan J. Unnecessary Routine Use of Mycobacterial Cultures in Patients With Periprosthetic Joint Infections. Open Forum Infect Dis. 2022; 17;9:ofac132.
- 10. Tai DBG, Wengenack NL, Patel R, Berbari EF, Abdel MP, Tande AJ. Fungal and mycobacterial cultures should not be routinely obtained for diagnostic work-up of patients with suspected periprosthetic joint infections. Bone Joint J. 2022; 104-B(1):53-58.

- 11. Tokarski AT, O'Neil J, Deirmengian CA, Ferguson J, Deirmengian GK. The routine use of atypical cultures in presumed aseptic revisions is unnecessary. Clin Orthop Relat Res. 2013;471:3171-3177.
- 12. Wadey VM, Huddleston JI, Goodman SB, Schurman DJ, Maloney WJ, Baron EJ. Use and cost-effectiveness of intraoperative acid-fast bacilli and fungal cultures in assessing infection of joint arthroplasties. J Arthroplasty. 2010; 25(8):1231-1234.
- 13. Contreras ES, Deiparine S, Ulrich MN, Alvarez PM, Bishop JY, Cvetanovich GL. The utility and cost of atypical cultures in revision shoulder arthroplasty. J Shoulder Elbow Surg. 2021; 30):2325-2330.
- 14. Amouyel T, Gaeremynck P, Gadisseux B, Saab M, Senneville E, Maynou C. Mycobacterium tuberculosis infection of reverse shoulder arthroplasty: a case report. J Shoulder Elbow Surg. 2019; 28: e271-e274.
- 15. Langlois ME, Ader F, Dumistrescu O, Servien E, Saison J, Ferry T, Chidiac C, Valour F; Lyon BJI and TB study groups. Mycobacterium bovis prosthetic joint infection. Med Mal Infect. 2016; 46: 445-448.
- 16. Meert C, Poinot N, Haumont E, Tollet P. Mycobacterium tuberculosis infection of a reverse total shoulder arthroplasty: a case report. Acta Orthop Belg. 2023; 89: 152-155.