G87: Do currently available products safely achieve local antibiotic concentrations above Minimum Biofilm Eradication Concentration (MBEC) for sufficient time to achieve eradication of infection?

Hyonmin Choe, Kohei Nishitani, Matthew S Austin, Pablo Slullitel, Juan D Lizcano, Akihiro Mauro, Yuta Hieda, Terry A Clyburn, Armita A Abedi, Javad Parvizi

Response/Recommendation: There is no clear evidence that the current products can safely achieve local antibiotics concentrations above Minimum Biofilm Eradication Concentration (MBEC) levels for sufficient time to eradication of infection.

Level Of Evidence: Strong

DELEGATE VOTE: Agree: [% vote], Disagree: [%], Abstain: [%]

Rationale:

The Minimum Biofilm Eradication Concentration (MBEC) represents the concentration of antibiotics required to eradicate biofilms. Ceri et al. introduced the Calgary Biofilm Device in 1999, developing a novel MBEC measurement system using peg plates and reported that MBEC requires antibiotic concentrations 100 to 1,000 times higher than the Minimum Inhibitory Concentration (MIC) [1]. Biofilm formation makes implant-associated infections (IAI) in orthopedics difficult to treat, with the MIC-MBEC disparity jeopardizing successful outcomes[2-4]. The International Consensus Meeting (ICM) in 2018 highlighted the limited utility of MIC in bacteria forming biofilms and emphasized on the importance of MBEC [5]. However, achieving MBEC through systemic antibiotic administration is difficult to achieve without causing severe systemic adverse effects. Thus, there is a clear need for innovative local delivery systems or treatment strategies that can deliver high concentrations of antibiotics at the site of infection over a sustained period.

We conducted a systematic review, using specific MESH terms developed by librarians, to identify all relevant publications in the Medline and Embase databases, covering studies published up to November 2024. Search results yielded 997 publications in English language. Two of the authors went through title and abstract screening and discrepant results were reviewed by a third person. Then, 97 full articles were reviewed and 51 articles were referenced in this manuscript.

Antibiotic concentration and duration for MBEC varies by bacterial strain and antibiotic type [2, 6]. Moreover, MBEC is influenced not only by antibiotic concentration but also by the duration of exposure [7-9]. Prolonged antibiotic administration has been shown to reduce MBEC values by promoting deeper penetration and sustained bacterial eradication. Additionally, combined antibiotic therapies can effectively lower MBEC values through synergistic mechanisms[3, 10], though in some cases, a combination of antibiotics may inadvertently increase the MBEC [11]. Significant synergistic effects have been also observed when antibiotics are used in conjunction with anti-inflammatory drugs such as aspirin and ketorolac[8, 12, 13], essential oils [14], enzymes that degrade proteins, polysaccharides or DNA [15], nanoparticles [16], and antimicrobial peptides [17]. However, the challenge intensifies under in vivo conditions, where MBEC values for biofilm-associated infections on implants are significantly elevated compared to in vitro measurements [18, 19]. The synergistic effect of combination therapy has the potential to reduce the MBEC to an antibiotic concentration feasible for clinical use, however, its efficacy and safety in clinical practice remain unverified.

To achieve high local antibiotic concentrations, antibiotic-loaded bone cement (ALBC) is

employed in orthopaedic procedures such as single and two-stage exchange arthroplasty [2, 20]. ALBC enable the localized delivery of high concentrations of antibiotics with sustained release over an extended period. However, this method is limited by a lack of high-quality evidence and the potential for antibiotic inactivation due to the heat generated during polymerization[21] Moreover, randomized studies have reported that most commercially available ALBC fail to maintain intra-articular antibiotic concentrations above the MBEC, with antibiotic concentration declining rapidly[22]. The use of static or articulating antibiotic spacers with high-dose antibiotic-loaded bone cement (ALBC) is widely recognized as an effective method for delivering high-concentration, sustained-release antibiotics directly to the infection site [2, 20, 23]. However, the high antibiotic concentration needed to achieve MBECs thresholds could lead to systemic toxicity and compromise the mechanical integrity of bone cement[24]. Calcium sulphate beads are also used for local antibiotic delivery, primarily in revision procedures, but have less favorable outcomes in Debridement, Antibiotics, and Implant Retention (DAIR) procedures and may increase the risk of implant surface abrasion [25].

Recent studies have demonstrated the efficacy of direct antibiotic administration into the joint or intramedullary cavity via catheters or intramedullary needles, as well as the use of biodegradable carriers for localized antibiotic delivery. Roy et al. [26] reported that intra-articular administration of vancomycin resulted in sustained high local antibiotic concentrations, while Young et al. [27] demonstrated that intraosseous administration of vancomycin achieved similar results, both when compared to intravenous administration. These methods have shown potential prophylactic benefits in total knee arthroplasty and total hip arthroplasty[27-29]. Such direct delivery techniques have been shown to maintain antibiotic concentrations exceeding the MBEC locally for a sustained period, though their use is predominantly prophylactic in elective orthopedic surgeries. In spinal surgeries, topical vancomycin is frequently employed for the prevention of surgical site infections (SSI). However, its preventive efficacy remains inconclusive [30].

Whiteside et al. investigated an intra-articular antibiotic infusion system designed for direct delivery to the infection site to disrupt biofilms in patients with periprosthetic joint infection (PJI) [31, 32]. This system achieved exceptionally high local antibiotic concentrations and demonstrated a success rate exceeding 95% in cases of PJI caused by MRSA or in patients with failed two-stage revision arthroplasty. Zou et al. highlighted that incorporating intra-articular infusion in single-stage revision procedures for PJI achieved high local antibiotic concentrations, likely exceeding the MBEC [33]. Springer et al. introduced an intra-articular antibiotic irrigation system for PJI patients and evaluated its safety through a Phase II prospective randomized comparative study using conventional two-stage revision arthroplasty as a control[34]. The study concluded that the intra-articular antibiotic irrigation system effectively elevated local antibiotic concentrations while minimizing systemic levels of antibiotics, with no significant increase in adverse events compared to conventional methods. The reported success rates of these intra-articular infusion are highly promising, achieving 90-100% in DAIR, 82-100% in single-stage revision arthroplasty, and approximately 80% in two-stage revision arthroplasty [35]. These findings suggest that intra-articular infusion may be a viable alternative to achieve sustained local antibiotic concentrations without compromising renal function[36]. Moreover, a recent study by Semeshchenko et al. examined the ability of five different irrigation solutions to achieve MBEC and reported that only povidone-iodine and silver nitrate successfully eradicated at least 99.9% of 24hour biofilm, suggesting the potential for non-antibiotic approaches to achieve MBEC [37].

Maruo et al. developed Continuous Local Antibiotics Perfusion; CLAP, a method for treating bone and soft tissue infections by directly delivering high-dose gentamic through intramedullary and intra-soft tissue perfusion system while utilizing a negative pressure wound closure system to facilitate antibiotic distribution and manage dead space. The efficacy of CLAP has been firstly reported in managing fracture-related infections [38, 39] Additionally, its effectiveness in treating PJIs has also been documented [40, 41]. Choe et al. further explored the application of this

method for fungal PJIs, administering micafungin at concentrations exceeding the MBEC against *Candida albicans* without observing significant adverse effects [41]. However, concerns have been raised regarding the potential cytotoxicity of such high local concentrations of antibiotics on osteoblasts [42]. Establishing an appropriate balance between effective antibiotic concentrations and minimizing cytotoxic effects remains a critical area for future research and clinical validation in direct antibiotic delivery technique.

Another approach for localized antibiotic delivery involves the use of biodegradable carriers. Ambrose et al. investigated a method of utilizing microspheres for antibiotic delivery by embedding antibiotics into polylacticglycolic acid to achieve homogeneous distribution, enabling steady-state release for up to four weeks at concentrations reaching the minimum bactericidal concentration [43-45]. These antibiotic-loaded microspheres demonstrated significant efficacy in eradicating infections and promoting favorable bone defect healing in a rabbit osteomyelitis model. Furthermore, technologies incorporating antibiotics into hydrogels have been commercialized as implant coatings and have shown utility in preventing SSI and PJI without significant adverse events [46, 47]. Hydrogels enable the delivery of high local concentrations of antibiotics over a sustained period and have the significant advantage of being biodegradable, eliminating the need for subsequent removal after their functional duration has elapsed[48-50]. Additionally, basic research is exploring methods to incorporate nanoparticles into hydrogels for more efficient localized delivery of antimicrobial agents[51]. Nanoparticles are becoming increasingly important in the treatment of biofilm-associated infections, although their clinical application has yet to be reported [52, 53].

In conclusion, currently two approaches have been explored in both basic research and clinical applications to achieve local antibiotic concentrations exceeding the MBEC: the direct infusion of antibiotics to the infection site using catheters or similar device, and the use of biocompatible carriers loaded with antibiotics to release high concentrations locally. These methods have been reported to have the potential to achieve MBEC levels at the infection site. However, the concentration and duration of antibiotics required to achieve MBEC vary greatly depending on the presence of implants, the bacterial strain, and the type of antibiotic. Furthermore, no definitive evidence currently exists to confirm that MBEC can be achieved in clinical practice. A further concern is that the high concentrations of antibiotics necessary to achieve MBEC may pose cytotoxic risks to surrounding tissues. Thus, there is still no clear evidence that MBEC has been successfully and safely achieved in clinical practice, and further clinical research is needed to address this clinical question in the future.

References

- [1] Ceri, H., et al., The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol, 1999;37(6):p. 1771-6.
- [2] Schwarz, E.M., et al., Adjuvant antibiotic-loaded bone cement: Concerns with current use and research to make it work. J Orthop Res, 2021;39(2):p. 227-239.
- [3] Sandoe, J.A., et al., Measurement of ampicillin, vancomycin, linezolid and gentamicin activity against enterococcal biofilms. J Antimicrob Chemother, 2006;57(4):p. 767-70.
- [4] Abad, L., et al., Evaluation of the ability of linezolid and tedizolid to eradicate intraosteoblastic and biofilm-embedded Staphylococcus aureus in the bone and joint infection setting. J Antimicrob Chemother, 2019;74(3):p. 625-632.
- [5] Saeed, K., et al., 2018 international consensus meeting on musculoskeletal infection: Summary from the biofilm workgroup and consensus on biofilm related musculoskeletal infections. J

- Orthop Res, 2019;37(5):p. 1007-1017.
- [6] Verderosa, A.D., M. Totsika, and K.E. Fairfull-Smith, Bacterial Biofilm Eradication Agents: A Current Review. Front Chem, 2019;7(824.
- [7] Castaneda, P., A. McLaren, G. Tavaziva, and D. Overstreet, Biofilm Antimicrobial Susceptibility Increases With Antimicrobial Exposure Time. Clin Orthop Relat Res, 2016;474(7):p. 1659-64.
- [8] Sekar, A., et al., Synergistic use of anti-inflammatory ketorolac and gentamicin to target staphylococcal biofilms. J Transl Med, 2024;22(1):p. 102.
- [9] Post, V., P. Wahl, R.G. Richards, and T.F. Moriarty, Vancomycin displays time-dependent eradication of mature Staphylococcus aureus biofilms. J Orthop Res, 2017;35(2):p. 381-388.
- [10] Furustrand Tafin, U., et al., Role of rifampin against Propionibacterium acnes biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother, 2012;56(4):p. 1885-91.
- [11] Dall, G.F., et al., Unexpected synergistic and antagonistic antibiotic activity against Staphylococcus biofilms. J Antimicrob Chemother, 2018;73(7):p. 1830-1840.
- [12] Al-Bakri, A.G., G. Othman, and Y. Bustanji, The assessment of the antibacterial and antifungal activities of aspirin, EDTA and aspirin-EDTA combination and their effectiveness as antibiofilm agents. J Appl Microbiol, 2009;107(1):p. 280-6.
- [13] Tabatabaeifar, F., E. Isaei, D. Kalantar-Neyestanaki, and J.R. Morones-Ramirez, Antimicrobial and Antibiofilm Effects of Combinatorial Treatment Formulations of Anti-Inflammatory Drugs-Common Antibiotics against Pathogenic Bacteria. Pharmaceutics, 2022;15(1):p.
- [14] Budzyńska, A., S. Różalska, B. Sadowska, and B. Różalska, Candida albicans/Staphylococcus aureus Dual-Species Biofilm as a Target for the Combination of Essential Oils and Fluconazole or Mupirocin. Mycopathologia, 2017;182(11):p. 989-995.
- [15] Fanaei Pirlar, R., et al., Combinatorial effects of antibiotics and enzymes against dual-species Staphylococcus aureus and Pseudomonas aeruginosa biofilms in the wound-like medium. PLoS One, 2020;15(6):p. e0235093.
- [16] Mohamed, M.S.M., et al., Combination of Silver Nanoparticles and Vancomycin to Overcome Antibiotic Resistance in Planktonic/Biofilm Cell from Clinical and Animal Source. Microb Drug Resist, 2020;26(11):p. 1410-1420.
- [17] Sharafi, T., E.A. Ghaemi, M. Rafiee, and A. Ardebili, Combination antimicrobial therapy: in vitro synergistic effect of anti-staphylococcal drug oxacillin with antimicrobial peptide nisin against Staphylococcus epidermidis clinical isolates and Staphylococcus aureus biofilms. Ann Clin Microbiol Antimicrob, 2024;23(1):p. 7.
- [18] Isguven, S., et al., In vitro investigations of Staphylococcus aureus biofilms in physiological fluids suggest that current antibiotic delivery systems may be limited. Eur Cell Mater, 2022;43(6-21.
- [19] Okae, Y., et al., Estimation of Minimum Biofilm Eradication Concentration (MBEC) on In Vivo Biofilm on Orthopedic Implants in a Rodent Femoral Infection Model. Front Cell Infect Microbiol, 2022;12(896978.

- [20] Tande, A.J. and R. Patel, Prosthetic joint infection. Clin Microbiol Rev, 2014;27(2):p. 302-45.
- [21] van de Belt, H., et al., Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. Biomaterials, 2001;22(12):p. 1607-11.
- [22] Lizcano, J.D., et al., In Vivo Intra-Articular Antibiotic Concentrations at 24 Hours After TKA Fall Below the Minimum Inhibitory Concentration for Most Bacteria: A Randomized Study of Commercially Available Bone Cement. J Bone Joint Surg Am, 2024;106(18):p. 1664-1672.
- [23] Choe, H., et al., Clinical utility of antibiotic-loaded hydroxyapatite block for treatment of intractable periprosthetic joint infection and septic arthritis of the hip. Mod Rheumatol, 2015;25(6):p. 937-42.
- [24] Bingham, J., When and How Should I Use Antibiotic Cement in Primary and Revision Joint Arthroplasty? J Arthroplasty, 2022;37(8):p. 1435-1437.
- [25] Abosala, A. and M. Ali, The Use of Calcium Sulphate beads in Periprosthetic Joint Infection, a systematic review. J Bone Jt Infect, 2020;5(1):p. 43-49.
- [26] Roy, M.E., M.P. Peppers, L.A. Whiteside, and R.M. LaZear, Vancomycin Concentration in Synovial Fluid: Direct Injection into the Knee vs. Intravenous Infusion. The Journal of Arthroplasty, 2014;29(3):p. 564-568.
- [27] Young, S.W., et al., The Mark Coventry Award: Higher tissue concentrations of vancomycin with low-dose intraosseous regional versus systemic prophylaxis in TKA: a randomized trial. Clin Orthop Relat Res, 2014;472(1):p. 57-65.
- [28] Park, K.J., et al., 2021 Chitranjan S. Ranawat Award: Intraosseous vancomycin reduces periprosthetic joint infection in primary total knee arthroplasty at 90-day follow-up. Bone Joint J, 2021;103-B(6 Supple A):p. 13-17.
- [29] Harper, K.D., et al., Otto Aufranc Award: Intraosseous Vancomycin in Total Hip Arthroplasty Superior Tissue Concentrations and Improved Efficiency. J Arthroplasty, 2023;38(7S):p. S11-S15.
- [30] Daher, M., et al., Does the Application of Topical Vancomycin Reduce Surgical Site Infections in Spine Surgery? A Meta-analysis of Randomized Controlled Trials. Clin Orthop Relat Res, 2024;482(12):p. 2212-2219.
- [31] Whiteside, L.A., M.E. Roy, and T.A. Nayfeh, Intra-articular infusion: a direct approach to treatment of infected total knee arthroplasty. Bone Joint J, 2016;98-B(1 Suppl A):p. 31-6.
- [32] Whiteside, L.A. and M.E. Roy, One-stage Revision With Catheter Infusion of Intraarticular Antibiotics Successfully Treats Infected THA. Clin Orthop Relat Res, 2017;475(2):p. 419-429.
- [33] Zou, C., et al., Synovial vancomycin and meropenem concentrations in periprosthetic joint infection treated by single-stage revision combined with intra-articular infusion. Bone Joint Res, 2024;13(10):p. 535-545.
- [34] Springer, B.D., et al., Safety Profile of Seven-Day Intra-articular Antibiotic Irrigation for the Treatment of Chronic Periprosthetic Joint Infection: A Prospective Randomized Phase II Comparative Study. J Arthroplasty, 2024;39(9S1):p. S229-S235 e1.

- [35] Jarusriwanna, A., W. Mu, and J. Parvizi, Local Antibiotic Infusion in Periprosthetic Joint Infection Following Total Hip Arthroplasty. J Clin Med, 2024;13(16):p.
- [36] Mu, W., et al., Low incidence of acute kidney injury with combined intravenous and topical antibiotic infusions in periprosthetic joint infection after total knee arthroplasty. Bone Joint Res, 2024;13(10):p. 525-534.
- [37] Semeshchenko, D., et al., Povidone-iodine and silver nitrate are equally effective in eradicating staphylococcal biofilm grown on a titanium surface: an in-vitro analysis. J Hosp Infect, 2025;155(185-191.
- [38] Maruo, A., et al., Continuous local antibiotic perfusion: A treatment strategy that allows implant retention in fracture-related infections. J Orthop Surg (Hong Kong), 2022;30(2):p. 10225536221111902.
- [39] Himeno, D., Y. Matsuura, A. Maruo, and S. Ohtori, A novel treatment strategy using continuous local antibiotic perfusion: A case series study of a refractory infection caused by hypervirulent Klebsiella pneumoniae. J Orthop Sci, 2022;27(1):p. 272-280.
- [40] Zenke, Y., et al., DAIR in treating chronic PJI after total knee arthroplasty using continuous local antibiotic perfusion therapy: a case series study. BMC Musculoskelet Disord, 2024;25(1):p. 36.
- [41] Choe, H., et al., Novel Local Antifungal Treatment for Fungal Periprosthetic Joint Infection With Continuous Local Antibiotic Perfusion: A Surgical Technique. Arthroplast Today, 2023;24(101245.
- [42] Yamamoto, Y., et al., Effects of high antibiotic concentrations applied to continuous local antibiotic perfusion on human bone tissue-derived cells. Bone Joint Res, 2024;13(3):p. 91-100.
- [43] Ambrose, C.G., et al., Antibiotic microspheres: preliminary testing for potential treatment of osteomyelitis. Clin Orthop Relat Res, 2003;415):p. 279-85.
- [44] Ambrose, C.G., et al., Effective treatment of osteomyelitis with biodegradable microspheres in a rabbit model. Clin Orthop Relat Res, 2004;421):p. 293-9.
- [45] Ambrose, C.G., et al., Evaluation of antibiotic-impregnated microspheres for the prevention of implant-associated orthopaedic infections. J Bone Joint Surg Am, 2014;96(2):p. 128-34.
- [46] Romano, C.L., et al., Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res, 2015;10(157.
- [47] Pressato, D., et al., The Intraoperative Use of Defensive Antibacterial Coating (DAC((R))) in the Form of a Gel to Prevent Peri-Implant Infections in Orthopaedic Surgery: A Clinical Narrative Review. Materials (Basel), 2023;16(15):p.
- [48] Tang, Y., et al., Advances in preparation and application of antibacterial hydrogels. J Nanobiotechnology, 2023;21(1):p. 300.
- [49] Casadidio, C., et al., Daptomycin-loaded biodegradable thermosensitive hydrogels enhance drug stability and foster bactericidal activity against Staphylococcus aureus. Eur J Pharm Biopharm, 2018;130(260-271.
- [50] Correia, A.A.V., et al., Antibacterial and Antibiofilm Potential of Bacterial Cellulose Hydrogel

- Containing Vancomycin against Multidrug-Resistant Staphylococcus aureus and Staphylococcus epidermidis. Biology (Basel), 2024;13(5):p.
- [51] Ferreira, M., et al., Liposomes as Antibiotic Delivery Systems: A Promising Nanotechnological Strategy against Antimicrobial Resistance. Molecules, 2021;26(7):p.
- [52] Rahmanian, N., et al., Surface-functionalized UIO-66-NH(2) for dual-drug delivery of vancomycin and amikacin against vancomycin-resistant Staphylococcus aureus. BMC Microbiol, 2024;24(1):p. 462.
- [53] Raouf, M., et al., Evaluation of Combined Ciprofloxacin and azithromycin free and nano formulations to control biofilm producing Pseudomonas aeruginosa isolated from burn wounds. Indian J Med Microbiol, 2021;39(1):p. 81-87.