HK8 - Does the use of antibiotic-impregnated PMMA cement reduce the incidence of infection in patients undergoing reimplantation for periprosthetic joint infection?

Atthakorn Jarusriwanna, Frank Buttacavoli, Wei Chai, Keerati Chareancholvanich, Michael Dunbar, Sérgio Gonçalves, André Grenho, Ianiv Klaber, Aasis Unnanuntana

Response/Recommendation:

Unknown. While some studies have reported high success with the use of antibiotic-impregnated PMMA cement in reimplantation, others show limited infection control. In addition, the use of uncemented implants during reimplantation has also demonstrated favorable outcomes.

Strength of recommendation: Moderate

Delegate Vote:

Rationale:

The use of antibiotic-impregnated polymethyl methacrylate (PMMA) cement in reimplantation for periprosthetic joint infection (PJI) has been proposed as an adjunctive strategy for local antibiotic delivery, aiming to enhance infection eradication while minimizing systemic toxicity [1]. However, the concentration of antibiotics such as vancomycin, gentamicin, tobramycin, or erythromycin in antibiotic-loaded bone cement (ABLC) may not reach and remain at the minimum inhibitory concentration (MIC), and the minimum biofilm eradication concentration (MBEC) over a prolonged period [2]. This raises questions about whether the use of antibiotic-impregnated PMMA cement effectively reduces the incidence of infection in patients undergoing reimplantation for PJI.

To answer the question posed above, a comprehensive systematic review was conducted with inclusion criteria restricted to English-language original articles reporting prospective or retrospective clinical studies on patients who underwent single- or two-stage revision total joint arthroplasty (TJA) for PJI. The review included studies evaluating the use of ALBC or no ALBC in revision total knee arthroplasty (TKA) and cementless or cemented techniques with or without ALBC in revision total hip arthroplasty (THA). A comprehensive literature search of the PubMed and Scopus databases yielded 788 abstracts. After the initial screening, 74 studies were selected for full-text review, and 25 were included in the final evaluation. The total number of patients across all included studies was 2,192. There were fifteen studies that focused on two-stage revision [3-17], eight studies examined single-stage revision [18-25], and the remaining two studies reported on both single- and two-stage revisions [26, 27]. Most two-stage revisions utilized antibiotic cement spacers or beads between stages [3-17, 26]. An ALBC was used during reimplantation in 13 studies, covering 990 patients. In contrast, another 14 studies, including two that assessed both ALBC and non-ALBC patients, reported 1,202 patients who did not receive ALBC during reimplantation.

The infection control rate, defined as a successful revision of TJA without recurrence or new infection in patients who received antibiotic-impregnated PMMA cement during reimplantation, ranged from 75 to 100%, with an average follow-up duration from 22.3 months to 10.5 years [11, 24]. Hsieh et al. [10] reported on 24 patients who underwent two-stage revision THA for PJI with massive bone loss. They used a cemented polyethylene cup within a metal cage

for patients who have acetabular deficiencies and a cemented allograft-prosthesis composite for those who have segmental femoral bone loss. Their ALBC protocol during reimplantation involved adding two grams (g) of antibiotics (mostly vancomycin) per 40 g pack of cement. After a follow-up period of 4.2 years (range, two to seven), no patients experienced recurrent infection. However, two cases of fractures of the cement femoral stem and one case of dislocation occurred, though these complications were unrelated to infection. Another study by Kuo et al. [13] investigated 10 knee and 12 hip PJI cases caused by methicillin-resistant Staphylococci. They performed two-stage revisions, using one g of daptomycin per 40 g pack of bone cement during reimplantation in the second stage. Their treatment protocol achieved a 100% success rate, with no recurrence of infection during a mean follow-up of 33.7 months (range, 24 to 57 months). However, a study by Leijtens et al. [15] reported an unsatisfactory success rate in 10 patients who had late infection of a cemented THA treated with two-stage revision while retaining the original well-fixed femoral cement mantle. During the second-stage revision, they implanted a cemented polyethylene cup on the acetabular side and performed a cement-within-cement revision on the femoral side. The ALBC consisted of bone cement mixed with 500 mg of erythromycin and 3,000,000 international units of colistin. After a mean followup of 26 months (range, five to 54 months), the primary microorganism was successfully eradicated in only two patients (20%).

In studies that did not use antibiotic-impregnated PMMA cement during reimplantation, whether in cemented revision THA or TKA, or cementless revision THA, the success rate without reinfection ranged from 83 to 100%. The mean follow-up duration for these patients varied between 35 months and 10.4 years [8, 12]. There were four studies that reported a 100% success rate with no relapse or new episodes of infection. Born et al. [26] found that all 21 single-stage revision THAs with a cementless stem had no infection failure over a mean follow-up of seven years. Another three studies performed a two-stage revision THA using a cementless prosthesis during the second-stage revision and found no reinfection following surgical intervention [8, 16, 17]. Similarly, several other studies reported high infection control rates despite not using antibiotic-impregnated PMMA cement [3-5, 9, 12, 18, 20, 21, 24].

While antibiotics in cement may help protect the implant-bone interface during the early postoperative period, infection eradication and successful treatment appear to depend more on meticulous surgical debridement, optimized systemic antibiotic therapy, and the host immune response.

References

- 1. Soares D, Leite P, Barreira P, Aido R, Sousa R. Antibiotic-loaded bone cement in total joint arthroplasty. Acta Orthop Belg. 2015;81(2):184-90.
- 2. Bourget-Murray J, Azad M, Gofton W, Abdelbary H, Garceau S, Grammatopoulos G. Is the routine use of local antibiotics in the management of periprosthetic joint infections justified? Hip Int. 2023;33(1):4-16.
- 3. Berend KR, Lombardi AV Jr, Morris MJ, Bergeson AG, Adams JB, Sneller MA. Two-stage treatment of hip periprosthetic joint infection is associated with a high rate of infection control but high mortality. Clin Orthop Relat Res. 2013;471(2):510-8.
- 4. Çağlar Ö, Tokgözoğlu M, Akgün RC, Atilla B. Low-dose vancomycin-loaded cement spacer for two-stage revision of infected total hip arthroplasty. Jt Dis Relat Surg. 2020;31(3):449-55.

- 5. Diwanji SR, Kong IK, Park YH, Cho SG, Song EK, Yoon TR. Two-stage reconstruction of infected hip joints. J Arthroplasty. 2008;23(5):656-61.
- 6. Durbhakula SM, Czajka J, Fuchs MD, Uhl RL. Antibiotic-loaded articulating cement spacer in the 2-stage exchange of infected total knee arthroplasty. J Arthroplasty. 2004;19(6):768-74.
- 7. Elbers JB, Leijtens B, van Werven HE, Sturm PD, Kullberg BJ, Schreurs BW. Antibiotic mixing through impacted bone grafts does not seem indicated in two-stage cemented hip revisions for septic loosening. Hip Int. 2014;24(6):596-603.
- 8. Fink B, Grossmann A, Fuerst M, Schäfer P, Frommelt L. Two-stage cementless revision of infected hip endoprostheses. Clin Orthop Relat Res. 2009;467(7):1848-58.
- 9. Haddad FS, Muirhead-Allwood SK, Manktelow AR, Bacarese-Hamilton I. Two-stage uncemented revision hip arthroplasty for infection. J Bone Joint Surg Br. 2000;82(5):689-94.
- 10. Hsieh PH, Shih CH, Chang YH, Lee MS, Yang WE, Shih HN. Treatment of deep infection of the hip associated with massive bone loss: two-stage revision with an antibiotic-loaded interim cement prosthesis followed by reconstruction with allograft. J Bone Joint Surg Br. 2005;87(6):770-5.
- 11. Kim YS, Bae KC, Cho CH, Lee KJ, Sohn ES, Kim BS. Two-stage revision using a modified articulating spacer in infected total knee arthroplasty. Knee Surg Relat Res. 2013;25(4):180-5.
- 12. Kim YH, Kim JS, Park JW, Joo JH. Cementless revision for infected total hip replacements. J Bone Joint Surg Br. 2011;93(1):19-26.
- 13. Kuo FC, Yen SH, Peng KT, Wang JW, Lee MS. Methicillin-resistant Staphylococcal periprosthetic joint infections can be effectively controlled by systemic and local daptomycin. BMC Infect Dis. 2016;16:48.
- 14. Lee WY, Hwang DS, Kang C, Shin BK, Zheng L. Usefulness of prosthesis made of antibiotic-loaded acrylic cement as an alternative implant in older patients with medical problems and periprosthetic hip infections: A 2- to 10-year follow-up study. J Arthroplasty. 2017;32(1):228-33.
- 15. Leijtens B, Sadeghi N, Schreurs BW, Rijnen WH. Cement-within-cement revision of infected total hip replacement; disappointing results in 10 retrospective cases. Hip Int. 2016;26(1):67-72.
- 16. Liu K, Zheng J, Jin Y, Zhao YQ. Application of temporarily functional antibiotic-containing bone cement prosthesis in revision hip arthroplasty. Eur J Orthop Surg Traumatol. 2014;24(1):51-5.
- 17. Zagra L, Gallazzi E, Romanò D, Scarponi S, Romanò C. Two-stage cementless hip revision for peri-prosthetic infection with an antibacterial hydrogel coating: results of a comparative series. Int Orthop. 2019;43(1):111-5.
- 18. Bori G, Muñoz-Mahamud E, Cuñé J, Gallart X, Fuster D, Soriano A. One-stage revision arthroplasty using cementless stem for infected hip arthroplasties. J Arthroplasty. 2014;29(5):1076-81.
- 19. Ji B, Wahafu T, Li G, Zhang X, Wang Y, Momin M, Cao L. Single-stage treatment of chronically infected total hip arthroplasty with cementless reconstruction: results in 126 patients with broad inclusion criteria. Bone Joint J. 2019;101-B(4):396-402.

- 20. Ji B, Li G, Zhang X, Wang Y, Mu W, Cao L. Effective treatment of single-stage revision using intra-articular antibiotic infusion for culture-negative prosthetic joint infection. Bone Joint J. 2020;102-B(3):336-44.
- 21. Ji B, Li G, Zhang X, Xu B, Wang Y, Chen Y, Cao L. Effective single-stage revision using intra-articular antibiotic infusion after multiple failed surgery for periprosthetic joint infection: a mean seven years' follow-up. Bone Joint J. 2022;104-B(7):867-74.
- 22. Kotecki K, Hoang V, LeCavalier D, Bradford M. An alternative one-stage exchange arthroplasty technique: For the chronic infected total hip. Cureus. 2020;12(10):e11138.
- 23. Maale GE, Eager JJ, Srinivasaraghavan A, Mohammadi DK, Kennard N. The evolution from the two stage to the one stage procedure for biofilm based periprosthetic joint infections (PJI). Biofilm. 2020;2:100033.
- 24. Zahar A, Klaber I, Gerken AM, Gehrke T, Gebauer M, Lausmann C, Citak M. Ten-year results following one-stage septic hip exchange in the management of periprosthetic joint infection. J Arthroplasty. 2019;34(6):1221-6.
- 25. Zeller V, Lhotellier L, Marmor S, Leclerc P, Krain A, Graff W, Ducroquet F, Biau D, Leonard P, Desplaces N, Mamoudy P. One-stage exchange arthroplasty for chronic periprosthetic hip infection: results of a large prospective cohort study. J Bone Joint Surg Am. 2014;96(1):e1.
- 26. Born P, Ilchmann T, Zimmerli W, Zwicky L, Graber P, Ochsner PE, Clauss M. Eradication of infection, survival, and radiological results of uncemented revision stems in infected total hip arthroplasties. Acta Orthop. 2016;87(6):637-43.
- 27. Choi HR, Kwon YM, Freiberg AA, Malchau H. Comparison of one-stage revision with antibiotic cement versus two-stage revision results for infected total hip arthroplasty. J Arthroplasty. 2013;28(8 Suppl):66-70.