HK 48: What patients are candidates for Debridement, implant retention, and antibiotic administration (DAIR)?

James Cashman, Paul McCarroll, Peter Choong, Alexander Neuwirth, Pedro Ivo Carvalho, Nicolaas Budhiparama, Ewout S Veltman, David Dewar, Yan-Guo Qin, Mehmet Kursat Yilmaz

Response/Recommendation: In general, all patients with acute onset of infection and with a stable prosthesis are candidates for DAIR. However, the expected infection eradication rate greatly depends on several patient and infection characteristics. The following patients are considered good candidates for DAIR:

- Infection within six weeks of the index arthroplasty
- Infection with an onset symptom of < seven days
- Well-fixed and stable implants.
- Exceptions may apply

Level of Evidence: Strong

Delegate Vote:

Rationale:

Debridement, implant retention, and antibiotic administration (DAIR) have shown favorable outcomes in selected patient populations, and their efficacy is limited by several factors, including the timing of intervention, patient comorbidities, microbiological burden, and surgical complexity. Recent advances, such as predictive scoring systems and machine learning algorithms, have provided new tools to improve risk stratification and guide decision-making. Despite these developments, the criteria for selecting appropriate candidates for DAIR remain complex and require a nuanced understanding of the interplay between host-, procedural-, and pathogen-specific variables.

Timing Relative to Symptom Duration

A shorter symptom duration before intervention was associated with improved DAIR outcomes. Patients treated within two days of symptom onset achieved an infection control rate of 89%, whereas those treated between three and seven days had a success rate of 59.5% [1]. When the mean duration from symptom onset to debridement was < seven days, the pooled success rate was 71.6%. Conversely, when this interval was extended beyond three weeks, the success rate dropped to 35%, a statistically significant decline (P < 0.05) [2]. This is echoed in multiple studies using different cut-off points; the duration of symptoms (> 10 days) was identified as an independent risk factor for failure, with an 8.5-fold increase in the hazard of failure compared to patients treated earlier (P = 0.016) [3-6]. Additionally, logistic regression revealed that each additional day of symptoms decreased the odds of success by 7.5%[7]. If symptoms persisted for > four weeks, patients were 2.35 times more likely to fail than those who had a symptom duration of < one week [8-11].

Timing Relative to Index Arthroplasty

The interval between index surgery and DAIR also plays a major role in success rates. Infections managed within 14 days of surgery showed lower reinfection rates (24.3%) than those treated between 46 and 90 days (45.8%)[12,13]. While there was no significant difference in outcomes when DAIR was performed within 28 versus 42 days postoperatively (85 versus

88%), delays beyond 90 days led to a marked decline in success rates (60%)[14]. Failures peaked in week seven (23%), but remained significantly high from week one to six. However, delaying DAIR beyond six weeks from the index procedure increased the failure rates [15]. When comparing early and late infections, success rates were significantly higher for early interventions. DAIR conducted within four weeks of the primary surgery had an 8% revision rate compared with 13% for procedures performed between four and 12 weeks [16]. Chronic infections (> three months from surgery) were associated with poorer outcomes, with success rates dropping to 45% regardless of symptom duration[17,18,6]. When combined The median time from the index surgery to DAIR was shorter in successful cases than in failures. However, the median interval from symptom onset to surgery remained similar between groups, emphasizing the importance of both parameters in determining outcomes [19,20]

Demographic Factors

Age was a significant factor in DAIR outcomes. Patients aged ≥ 85 years have a 391% increased risk of reinfection compared to those aged 65 to 69 years (P < 0.001) [13,12]. However, in some studies, age was not found to be a statistically significant factor for DAIR success [21,22]. Men have also been identified as a predictor of failure in several analyses[23-25]. The heterogeneity of the different comorbidity scoring indices used makes comparisons among these studies difficult. Patients who have higher CCI scores (≥ four) had similar failure rates (64%) to those who have scores of 1 to 3 (67%) [22]. Rheumatoid arthritis (RA) is a significant independent risk factor for failure, with hazard ratios ranging from 2.20 to 45.1 in various studies [23,26-28]. Conditions such as ischemic heart disease, chronic obstructive pulmonary disease (COPD), and chronic kidney disease (CKD) also predict poor outcomes[23,29,25,30-32]. Obesity, particularly morbid obesity, is an important predictor of treatment failure. Morbidly obese patients experienced significantly higher failure rates (57.9%) compared to non-obese patients (36.8%), with a hazard ratio (HR) of 2.77 (P = 0.035) [33]. Smoking is also associated with increased failure rates, particularly in early acute infections.[34]. Psychiatric conditions, such as major depressive disorder (MDD) and generalized anxiety disorder (GAD), have been identified as contributors to failure [34,24]. The use of immunosuppressive medications is a strong independent predictor of DAIR failure (odds ratio [OR], 0.13) [35,36]. Patients who underwent arthroplasty for non-osteoarthritis indications (e.g., inflammatory arthritis or hip fractures) had significantly higher failure rates[23,37,38].

Preoperative C-Reactive Protein (CRP)

CRP is a well-established marker of inflammation and infection, and its levels are consistently correlated with DAIR outcomes. Patients who have failed DAIR had significantly higher CRP levels at presentation than those who had successful outcomes. In one study, the mean CRP was 162.5 mg/L in the failure group and 105.5 mg/L in the success group (P < 0.001) [39,40]. Another study identified a CRP cut-off of 65 mg/L, where 68.9% of patients who have CRP > 65 mg/L failed treatment compared to 43.6% with CRP \leq 65 mg/L (P < 0.0002) [39,40]. Higher CRP thresholds further exacerbated the risk of failure. A preoperative CRP level >100 mg/L was independently associated with failure (P = 0.001), and logistic regression showed that each unit increase in CRP level increased the odds of failure (OR 1.01, P < 001) [41,42,10,32,43]. However, some evidence suggests variability in the predictive value of CRP. In certain cases, preoperative CRP levels did not significantly correlate with DAIR success, suggesting that CRP alone may not always predict outcomes[44,19].

Erythrocyte Sedimentation Rate (ESR)

The role of ESR in predicting DAIR outcomes was less consistent than that of CRP level. In some studies, a higher preoperative ESR was associated with failure. Patients who have an ESR > 40 mm/hour were 4.7 times more likely to fail DAIR than those who have an ESR < 40 mm/hour [45]. Similarly, mean ESR levels were significantly higher in the failure groups (103.5 mm/hr) than in the success groups (69.1 mm/hour) [46]. However, in other analyses, ESR was not significantly associated with the DAIR outcomes [39,40,19]. The variability in findings may stem from differences in the study populations and ESR thresholds used for the analysis. Bacteremia at the time of DAIR was associated with a significantly lower success rate (31%) compared to those who did not have bacteremia (65%)[47,36]. Late acute and hematogenous infections were also associated with worse outcomes than early postoperative infections. Late acute PJI had an OR of 4.52 for failure, with bacteremia further worsening the success rates in these cases [36,26]. In patients who have acute hematogenous PJI, treatment success rates were significantly lower in those who have positive blood cultures (36.3%) than in those who have negative cultures (66.7%, P = 0.047) [48,49]. Bacteremia was particularly detrimental in late acute infections, where it was associated with worse outcomes compared to early acute infections (31% success versus 65%, OR 4.1) [5]. Furthermore, patients who have sepsis had lower treatment success rates (51%) than those who do not have sepsis (67%)[50].

Combined Consideration of Markers

Combining inflammatory markers with blood culture results provides a comprehensive assessment. Elevated CRP, ESR, and bacteremia collectively increase the likelihood of DAIR failure. For instance, in one study, patients who have a CRP > 22 mg/dL and positive blood cultures exhibited significantly higher failure rates.[51]. The use of CRP and ESR ratios has also been explored to differentiate between types of infections. For chronic postoperative reinfections, ESR demonstrated a sensitivity of 75% and a specificity of 84% at a cutoff of 1.31 [52]. The efficacy here is mild to moderate discrimination at best based on the AUC; these parameters are useful adjuncts, but no single variable is perfect in predicting the outcome.

Scoring Systems

The KLIC scoring system integrates factors such as CRP level, time from arthroplasty to debridement, and comorbidities to predict DAIR outcomes. A one-point increase in the KLIC score corresponds to a 1.32 to 1.45 times higher risk of failure [10,11]. Patients who have scores < 3.5 had high success probabilities, while scores > 6 were associated with significant failure rates (e.g., >85% failure for scores > 7)[32,11,53]. For example, a KLIC score of 3.5 had an AUC of 0.762, with a sensitivity of 77% and a specificity of 57% [54,53]. Patients who have scores of > 7 had a 100% failure rate [53]. Adjusting thresholds for clinical applicability revealed that scores < 4 had failure rates of 27.9%, while scores > 7 had failure rates exceeding 85%[32]. Similarly, the CRIME80 scoring system, which incorporates variables such as CRP, comorbidities, and infection chronicity, demonstrated a failure rate of 67.9% for scores ≥ 3 compared with 35.8% for scores < 3 (P < 0.0001) [54]. However, as with the KLIC score, its predictive accuracy diminishes in intermediate-risk categories, highlighting the need for further refinement of these models. Patients who have low scores (e.g., KLIC < 3.5 or CRIME80 < 3) are likely to achieve success with DAIR, allowing for more confident recommendations for conservative management. High-risk scores (for example, KLIC > 6 or CRIME80 ≥ 3) highlight the need for alternative strategies, such as staged revisions, particularly when comorbidities or elevated inflammatory markers are present.

Machine Learning Predictive Algorithms for DAIR Outcomes

In a cohort of 556 patients, the algorithm predicted failure risk with varying degrees of success. Among patients categorized as low risk (< 30% failure probability), only 21.8% failed DAIR.

For those in the intermediate-risk category (30 to 50% failure probability), 37.6% experienced failure. However, patients classified as high risk (> 50% failure probability) had a failure rate of 62.5%, underscoring the model's capacity to stratify patients effectively [23]. In a cohort of 64 patients, the overall success rate was 60.9%; most cases exhibited success probabilities between 40 and 80%, suggesting the moderate utility of the model in predicting outcomes [55]. The application of Shohat's scoring system to the same cohort yielded an AUC of 0.69, indicating moderate predictive ability. Using a 50% cut-off value, the score achieved a sensitivity of 82%, a specificity of 44%, and a negative predictive value of 0.611. This result supports Shohat's system as an adjunct for predicting DAIR success [55]. However, the limitations of these systems must be acknowledged. In some cohorts, AUCs for these models ranged from 0.6 to 0.8, reflecting moderate discrimination [56,53]. Furthermore, sensitivity and specificity are often suboptimal in intermediate categories, which reduces their clinical precision in such cases [11,53].

Revision TKA

Recent advancements in machine learning have enhanced the ability to predict outcomes following revision total knee arthroplasty (TKA) for PJI. Neural network models demonstrated the highest predictive accuracy, with AUC values ranging from 0.81 to 0.84, indicating excellent discrimination[57]. Previous irrigation and debridement with or without modular component exchange and > four open surgeries were the strongest predictors of failure [6,58]. Comorbidities, such as obesity, renal failure, diabetes, metastatic disease, and depression, significantly increase the risk of recurrent infection. The success of revision TKA in the context of PJI is influenced by the surgical approach chosen. For patients who have extensive instrumentation, success rates were similar between irrigation and debridement with chronic suppression (62.5%) and two-stage revision (67.7%)[59]. However, long-term infection-free survival favored two-stage revision, with a 5-year infection-free survival rate of 75% compared with 16% for DAIR or extended DAIR (P = 0.006). [60]. Megaprostheses, pose additional challenges in the management of PJI. There was one study focusing on DAIR in nononcological femoral megaprostheses that reported a success rate of 64.3% with a minimum follow-up of five years[61]. However, these results must be interpreted cautiously as the study did not account for other patient or procedural factors. Extended DAIR procedures in megaprostheses, which involve removing all components except the stems, have been explored as an alternative to complete revision. While these approaches preserve some structural integrity, their long-term efficacy remains limited, with Kaplan-Meier analysis showing a 5year infection-free survival rate of 16%[60]. This highlights the critical need for improved strategies to manage infections in patients who have megaprostheses.

Debridement, antibiotics, and implant retention (DAIR) remain valuable limb- and implant-preserving options for managing periprosthetic joint infections (PJI) in appropriately selected patients. Critical factors influencing DAIR success include the timing of intervention relative to symptom onset and index surgery, patient demographics, comorbidities, inflammatory markers, bacteremia, and the use of predictive scoring systems. These factors should be considered when evaluating which patients are candidates for DAIR.

References:

1. Bedair HS, Katakam A, Bedeir YH, Yeroushalmi D, Schwarzkopf R (2020) A decision analysis of treatment strategies for acute periprosthetic joint infection: Early irrigation

- and debridement versus delayed treatment based on organism. J Orthop 22:246-250. doi:10.1016/j.jor.2020.04.003
- 2. Qu GX, Zhang CH, Yan SG, Cai XZ (2019) Debridement, antibiotics, and implant retention for periprosthetic knee infections: a pooling analysis of 1266 cases. J Orthop Surg Res 14 (1):358. doi:10.1186/s13018-019-1378-4
- 3. Shao H, Li R, Deng W, Yu B, Yang D, Zhou Y, Chen J (2022) Symptom duration is associated with failure of periprosthetic joint infection treated with debridement, antibiotics and implant retention. Front Surg 9:913431. doi:10.3389/fsurg.2022.913431
- 4. In Jun K, In Jun K, Seung-Bum H, Seung-Bum H, Myungshin K, Yong I, Yong I, Kwang-Jun O, Kwang-Jun O, Dae-Hee L, Dae Hee L, Tae Kyun K, Tae Kyun K (2015) Open debridement and prosthesis retention is a viable treatment option for acute periprosthetic joint infection after total knee arthroplasty. Archives of orthopaedic and trauma surgery. doi:10.1007/s00402-015-2237-3
- 5. Buller LT, Sabry FY, Easton RW, Klika AK, Barsoum WK (2012) The preoperative prediction of success following irrigation and debridement with polyethylene exchange for hip and knee prosthetic joint infections. J Arthroplasty 27 (6):857-864.e851. doi:10.1016/j.arth.2012.01.003
- 6. Katy K, Katy K, Mark Z, Mark Z, Alana C, Alana C, Alana C, Jacob TM, Jacob TM, Simon NY, Simon WY (2019) Failed Debridement and Implant Retention Does Not Compromise the Success of Subsequent Staged Revision in Infected Total Knee Arthroplasty. Journal of Arthroplasty. doi:10.1016/j.arth.2019.01.066
- 7. Triantafyllopoulos GK, Poultsides LA, Zhang W, Sculco PK, Ma Y, Sculco TP (2015) Periprosthetic knee infections treated with irrigation and debridement: outcomes and preoperative predictive factors. J Arthroplasty 30 (4):649-657. doi:10.1016/j.arth.2014.10.026
- 8. Ken U, Kenneth LU, Andrew GB, Andrew GB, Alexander MK, Alexander MK, Alexander MK, Neel S, Neel S, Kwonho J, Kwonho J, Scott DR, Scott DR, James JI, James JI, Brian AK, Brian AK, Brian RH, Brian RH (2017) A Multicenter Study of Irrigation and Debridement in Total Knee Arthroplasty Periprosthetic Joint Infection: Treatment Failure Is High. Journal of Arthroplasty. doi:10.1016/j.arth.2017.11.029
- 9. Urish KL, Bullock AG, Kreger AM, Shah NB, Jeong K, Rothenberger SD (2018) A Multicenter Study of Irrigation and Debridement in Total Knee Arthroplasty Periprosthetic Joint Infection: Treatment Failure Is High. J Arthroplasty 33 (4):1154-1159. doi:10.1016/j.arth.2017.11.029
- 10. Morcillo D, Detrembleur C, Poilvache H, Van Cauter M, Cyr Yombi J, Cornu O (2020) Debridement, antibiotics, irrigation and retention in prosthetic joint infection: predictive tools of failure. Acta orthopaedica Belgica 86 (4):636-643
- 11. Rasmus L, Honkanen M, Eskelinen A, Reito A (2023) KLIC-Score Does Not Predict Failure After Early Prosthetic Joint Infection: An External Validation with 153 Knees and 130 Hips. Journal of Arthroplasty. doi:10.1016/j.arth.2023.12.012
- 12. Baker JF, Dilworth B, Bhimani SJ, Ong KL, Lau EC, Smith LS, Malkani AL (2020) Risk of Reinfection after Irrigation and Debridement of Acute Periprosthetic Joint Infection following TKA. J Knee Surg 33 (7):623-628. doi:10.1055/s-0039-1683920
- 13. James FB, James FB, Brian D, Brian D, Samrath B, Samrath JB, Kevin O, Kevin LO, Edmund L, Edmund L, Langan SS, Langan SS, Arthur LM, Arthur LM (2019) Risk of Reinfection after Irrigation and Debridement of Acute Periprosthetic Joint Infection following TKA. Journal of Knee Surgery. doi:10.1055/s-0039-1683920

- 14. Ottesen CS, Troelsen A, Sandholdt H, Jacobsen S, Husted H, Gromov K (2019) Acceptable Success Rate in Patients With Periprosthetic Knee Joint Infection Treated With Debridement, Antibiotics, and Implant Retention. J Arthroplasty 34 (2):365-368. doi:10.1016/j.arth.2018.09.088
- 15. Löwik CAM, Parvizi J, Jutte PC, Zijlstra WP, Knobben BAS, Xu C, Goswami K, Belden KA, Sousa R, Carvalho A, Martínez-Pastor JC, Soriano A, Wouthuyzen-Bakker M (2020) Debridement, Antibiotics, and Implant Retention Is a Viable Treatment Option for Early Periprosthetic Joint Infection Presenting More Than 4 Weeks After Index Arthroplasty. Clin Infect Dis 71 (3):630-636. doi:10.1093/cid/ciz867
- 16. van der Ende B, van Oldenrijk J, Reijman M, Croughs PD, van Steenbergen LN, Verhaar JAN, Bos PK (2021) Timing of debridement, antibiotics, and implant retention (DAIR) for early post-surgical hip and knee prosthetic joint infection (PJI) does not affect 1-year rerevision rates: data from the Dutch Arthroplasty Register. J Bone Jt Infect 6 (8):329-336. doi:10.5194/jbji-6-329-2021
- 17. Davis JS, Metcalf S, Clark B, Robinson JO, Huggan P, Luey C, McBride S, Aboltins C, Nelson R, Campbell D, Solomon LB, Schneider K, Loewenthal MR, Yates P, Athan E, Cooper D, Rad B, Allworth T, Reid A, Read K, Leung P, Sud A, Nagendra V, Chean R, Lemoh C, Mutalima N, Tran T, Grimwade K, Sehu M, Looke D, Torda A, Aung T, Graves S, Paterson DL, Manning L (2022) Predictors of Treatment Success After Periprosthetic Joint Infection: 24-Month Follow up From a Multicenter Prospective Observational Cohort Study of 653 Patients. Open Forum Infect Dis 9 (3):ofac048. doi:10.1093/ofid/ofac048
- 18. Dx Duffy S, Ahearn N, Darley ES, Porteous AJ, Murray JR, Howells NR (2018) Analysis Of The KLIC-score; An Outcome Predictor Tool For Prosthetic Joint Infections Treated With Debridement, Antibiotics And Implant Retention. J Bone Jt Infect 3 (3):150-155. doi:10.7150/jbji.21846
- 19. Stryker LS, Abdel MP, Hanssen AD (2013) Predictive value of inflammatory markers for irrigation and debridement of acute TKA infection. Orthopedics 36 (6):765-770. doi:10.3928/01477447-20130523-22
- 20. Zmistowski BM, Manrique J, Patel R, Chen AF (2016) Recurrent Periprosthetic Joint Infection After Irrigation and Debridement With Component Retention Is Most Often Due to Identical Organisms. J Arthroplasty 31 (9 Suppl):148-151. doi:10.1016/j.arth.2016.05.040
- 21. Zhang C, Yan CH, Chan PK, Ng FY, Chiu KY (2017) Polyethylene Insert Exchange Is Crucial in Debridement for Acute Periprosthetic Infections following Total Knee Arthroplasty. J Knee Surg 30 (1):36-41. doi:10.1055/s-0036-1579667
- 22. Fehring TK, Odum SM, Berend KR, Jiranek WA, Parvizi J, Bozic KJ, Della Valle CJ, Gioe TJ (2013) Failure of irrigation and débridement for early postoperative periprosthetic infection. Clinical orthopaedics and related research 471 (1):250-257. doi:10.1007/s11999-012-2373-9
- 23. Shohat N, Goswami K, Tan TL, Yayac M, Soriano A, Sousa R, Wouthuyzen-Bakker M, Parvizi J (2020) 2020 Frank Stinchfield Award: Identifying who will fail following irrigation and debridement for prosthetic joint infection. Bone Joint J 102-B (7_Supple_B):11-19. doi:10.1302/0301-620X.102B7.BJJ-2019-1628.R1
- 24. Katakam A, Melnic CM, Bedair HS (2020) Dual Surgical Setup May Improve Infection Control Rate of Debridement and Implant Retention Procedures for Periprosthetic Infections of the Hip and Knee. J Arthroplasty 35 (9):2590-2594. doi:10.1016/j.arth.2020.04.068

- 25. Uriarte I, Moreta J, Mosquera J, Legarreta MJ, Aguirre U, Martínez de Los Mozos JL (2019) Debridement, Antibiotics and Implant Retention for Early Periprosthetic Infections of the Hip: Outcomes and Influencing Factors. Hip Pelvis 31 (3):158-165. doi:10.5371/hp.2019.31.3.158
- 26. Lora-Tamayo J, Senneville É, Ribera A, Bernard L, Dupon M, Zeller V, Li HK, Arvieux C, Clauss M, Uçkay I, Vigante D, Ferry T, Iribarren JA, Peel TN, Sendi P, Miksic NG, Rodríguez-Pardo D, Del Toro MD, Fernández-Sampedro M, Dapunt U, Huotari K, Davis JS, Palomino J, Neut D, Clark BM, Gottlieb T, Trebše R, Soriano A, Bahamonde A, Guío L, Rico A, Salles MJC, Pais MJG, Benito N, Riera M, Gómez L, Aboltins CA, Esteban J, Horcajada JP, O'Connell K, Ferrari M, Skaliczki G, Juan RS, Cobo J, Sánchez-Somolinos M, Ramos A, Giannitsioti E, Jover-Sáenz A, Baraia-Etxaburu JM, Barbero JM, Choong PFM, Asseray N, Ansart S, Moal GL, Zimmerli W, Ariza J (2017) The Not-So-Good Prognosis of Streptococcal Periprosthetic Joint Infection Managed by Implant Retention: The Results of a Large Multicenter Study. Clin Infect Dis 64 (12):1742-1752. doi:10.1093/cid/cix227 27. Rudelli BA, Giglio PN, de Carvalho VC, Pécora JR, Gurgel HMC, Gobbi RG, Vicente JRN, Lima A, Helito CP (2020) Bacteria drug resistance profile affects knee and hip periprosthetic joint infection outcome with debridement, antibiotics and implant
- 28. Ghnaimat M, Alyamani A, Obeidat M, Jbarat A, Abushahot M (2021) Is DAIR Still an Effective Way to Eradicate Acute Prosthetic Joint Infections? Our Experience in the Jordanian Royal Medical Services. Med Arch 75 (6):451-455. doi:10.5455/medarh.2021.75.451-455

retention. BMC Musculoskelet Disord 21 (1):574. doi:10.1186/s12891-020-03570-1

- 29. Wouthuyzen-Bakker M, Sebillotte M, Lomas J, Taylor A, Palomares EB, Murillo O, Parvizi J, Shohat N, Reinoso JC, Sánchez RE, Fernandez-Sampedro M, Senneville E, Huotari K, Barbero JM, Garcia-Cañete J, Lora-Tamayo J, Ferrari MC, Vaznaisiene D, Yusuf E, Aboltins C, Trebse R, Salles MJ, Benito N, Vila A, Toro MDD, Kramer TS, Petersdorf S, Diaz-Brito V, Tufan ZK, Sanchez M, Arvieux C, Soriano A (2019) Clinical outcome and risk factors for failure in late acute prosthetic joint infections treated with debridement and implant retention. J Infect 78 (1):40-47. doi:10.1016/j.jinf.2018.07.014
- 30. Krizsán G, Sallai I, Veres DS, Prinz G, Kovács M, Skaliczki G (2023) Investigation of the effect of rifampicin resistance and risk factors on recovery rates after DAIR procedure in patients with prosthetic joint infection. J Orthop Surg Res 18 (1):611. doi:10.1186/s13018-023-04091-y
- 31. Shohat N, Goswami K, Tan TL, Fillingham Y, Parvizi J (2019) Increased Failure After Irrigation and Debridement for Acute Hematogenous Periprosthetic Joint Infection. The Journal of bone and joint surgery American volume 101 (8):696-703. doi:10.2106/JBJS.18.00381
- 32. Löwik CAM, Jutte PC, Tornero E, Ploegmakers JJW, Knobben BAS, de Vries AJ, Zijlstra WP, Dijkstra B, Soriano A, Wouthuyzen-Bakker M (2018) Predicting Failure in Early Acute Prosthetic Joint Infection Treated With Debridement, Antibiotics, and Implant Retention: External Validation of the KLIC Score. J Arthroplasty 33 (8):2582-2587. doi:10.1016/j.arth.2018.03.041
- 33. Katakam A, Melnic CM, Bedair HS (2020) Morbid Obesity Is a Risk Factor for Infection Recurrence Following Debridement, Antibiotics, and Implant Retention for Periprosthetic Joint Infection. J Arthroplasty 35 (12):3710-3715. doi:10.1016/j.arth.2020.07.005

- 34. Lesens O, Ferry T, Forestier E, Botelho-Nevers E, Pavese P, Piet E, Pereira B, Montbarbon E, Boyer B, Lustig S, Descamps S (2018) Should we expand the indications for the DAIR (debridement, antibiotic therapy, and implant retention) procedure for Staphylococcus aureus prosthetic joint infections? A multicenter retrospective study. Eur J Clin Microbiol Infect Dis 37 (10):1949-1956. doi:10.1007/s10096-018-3330-7
- 35. Veerman K, Raessens J, Telgt D, Smulders K, Goosen JHM (2022) Debridement, antibiotics, and implant retention after revision arthroplasty: antibiotic mismatch, timing, and repeated DAIR associated with poor outcome. Bone Joint J 104-B (4):464-471. doi:10.1302/0301-620X.104B4.BJJ-2021-1264.R1
- 36. Wouthuyzen-Bakker M, Sebillotte M, Huotari K, Escudero Sánchez R, Benavent E, Parvizi J, Fernandez-Sampedro M, Barbero JM, Garcia-Cañete J, Trebse R, Del Toro M, Diaz-Brito V, Sanchez M, Scarborough M, Soriano A (2020) Lower Success Rate of Débridement and Implant Retention in Late Acute versus Early Acute Periprosthetic Joint Infection Caused by Staphylococcus spp. Results from a Matched Cohort Study. Clinical orthopaedics and related research 478 (6):1348-1355. doi:10.1097/corr.00000000000001171
- 37. de Vries L, van der Weegen W, Neve WC, Das H, Ridwan BU, Steens J (2016) The Effectiveness of Debridement, Antibiotics and Irrigation for Periprosthetic Joint Infections after Primary Hip and Knee Arthroplasty. A 15 Years Retrospective Study in Two Community Hospitals in the Netherlands. J Bone Jt Infect 1:20-24. doi:10.7150/jbji.14075 38. Anna H, Anna H, Valdís Guðrún Þ, Valdís Gudrún T, Otto R, Otto R, Annette WD, Annette WD, Anna S, Anna S (2015) 75% success rate after open debridement, exchange of tibial insert, and antibiotics in knee prosthetic joint infections. Acta orthopaedica. doi:10.3109/17453674.2015.1026756
- 39. Mark Z, Mark Z, Katy K, Katy K, Katy K, Katy K, Alana C, Alana C, Alana C, Brendan C, Brendan C, Jacob TM, Jacob TM, Jacob TM, Simon WY, Simon WY (2020) Success Rates of Debridement, Antibiotics, and Implant Retention in 230 Infected Total Knee Arthroplasties: Implications for Classification of Periprosthetic Joint Infection. Journal of Arthroplasty. doi:10.1016/j.arth.2020.07.081
- 40. Zhu MF, Kim K, Cavadino A, Coleman B, Munro JT, Young SW (2021) Success Rates of Debridement, Antibiotics, and Implant Retention in 230 Infected Total Knee Arthroplasties: Implications for Classification of Periprosthetic Joint Infection. J Arthroplasty 36 (1):305-310.e301. doi:10.1016/j.arth.2020.07.081
- 41. Jacobs AME, Valkering LJJ, Bénard M, Meis JF, Goosen JHM (2019) Evaluation One Year after DAIR Treatment in 91 Suspected Early Prosthetic Joint Infections in Primary Knee and Hip Arthroplasty. J Bone Jt Infect 4 (5):238-244. doi:10.7150/jbji.37757
- 42. Claudia AML, Claudia AML, Javad P, Javad P, Paul CJ, Paul CJ, Wiebren Z, Wierd PZ, Wierd PZ, Bas ASK, Bas ASK, Chi X, Chi X, Karan G, Karan G, Karan G, Katherine AB, Katherine AB, Ricardo S, Ricardo S, André C, André FC, André C, André C, Juan CM-P, Martínez-Pastor JC, Álex S, Alex S, Marjan W-B, Marjan W-B (2019) Debridement, Antibiotics, and Implant Retention Is a Viable Treatment Option for Early Periprosthetic Joint Infection Presenting More Than 4 Weeks After Index Arthroplasty. Clinical Infectious Diseases. doi:10.1093/cid/ciz867
- 43. Bene N, Li X, Nandi S (2018) Factors affecting failure of irrigation and debridement with liner exchange in total knee arthroplasty infection. Knee 25 (5):932-938. doi:10.1016/j.knee.2018.07.003

- 44. Öztürk Ö, Özdemir M, Turgut MC, Altay M (2021) The Fate of Failed Debridement, Antibiotics, and Implant Retention in Infected Knee Arthroplasties: Nothing to Lose. Cureus 13 (10):e18946. doi:10.7759/cureus.18946
- 45. Deijkers RLM, Deijkers RL, Erika PMvE, Elzakker EPMv, Bart GP, Pijls BG, Bart GP (2020) Debridement, Antibiotics, and Implant Retention with the Direct Anterior Approach for Acute Periprosthetic Joint Infection Following Primary THA. doi:10.2106/jbjs.oa.19.00062 46. Kim JG, Bae JH, Lee SY, Cho WT, Lim HC (2015) The parameters affecting the success of irrigation and debridement with component retention in the treatment of acutely infected total knee arthroplasty. Clin Orthop Surg 7 (1):69-76. doi:10.4055/cios.2015.7.1.69
- 47. Rosas S, Hegde V, Plate FJ, Dennis D, Jennings J, Bracey DN (2022) Bacteremia in Patients Undergoing Debridement, Antibiotics, and Implant Retention Leads to Increased Reinfections and Costs. Arthroplast Today 16:259-263.e251. doi:10.1016/j.artd.2022.05.014
- 48. Brian AP, Brian AP, Joseph EK, Joseph K, Viviana Serra L, Viviana Serra L, Stephen B, Stephen B, Kevin P, Kevin P, Gwo-Chin L, Gwo Chin L (2022) Does a 2-Stage Debridement Result in Higher Rates of Implant Retention Compared to Single Debridement Alone? Journal of Arthroplasty. doi:10.1016/j.arth.2022.02.040
- 49. Kuo FC, Goswami K, Klement MR, Shohat N, Parvizi J (2019) Positive Blood Cultures Decrease the Treatment Success in Acute Hematogenous Periprosthetic Joint Infection Treated With Debridement, Antibiotics, and Implant Retention. J Arthroplasty 34 (12):3030-3034.e3031. doi:10.1016/j.arth.2019.06.053
- 50. Ludwick L, Siqueira M, Shohat N, Sherman MB, Streicher S, Parvizi J (2022) For Patients With Acute PJI Treated With Debridement, Antibiotics, and Implant Retention, What Factors Are Associated With Systemic Sepsis and Recurrent or Persistent Infection in Septic Patients? Clinical orthopaedics and related research 480 (8):1491-1500. doi:10.1097/corr.0000000000002192
- 51. Félix V-C, Félix V, Juan CM-P, Martínez-Pastor JC, Sebastián G-R, García-Ramiro S, Guillem B, Guillem B, Maculé F, Maculé F, Josep MS, Josep MS, Font L, Font L, Josep M, Josep M, Álex S, Alex S (2011) Outcome and predictors of treatment failure in early post-surgical prosthetic joint infections due to Staphylococcus aureus treated with debridement. Clinical Microbiology and Infection. doi:10.1111/j.1469-0691.2010.03244.x
- 52. Maier SP, Klemt C, Tirumala V, Oganesyan R, van den Kieboom J, Kwon YM (2020) Elevated ESR/CRP Ratio Is Associated With Reinfection After Debridement, Antibiotics, and Implant Retention in Chronic Periprosthetic Joint Infections. J Arthroplasty 35 (11):3254-3260. doi:10.1016/j.arth.2020.06.007
- 53. Carlos J-G, Carlos J-G, Gómez-Palomo JM, Juan Miguel G-P, Rodriguez-Delourme I, Inés R-D, Durán-Garrido FJ, Francisco Javier D-G, Nuño-Álvarez E, Enrique N-Á, Montañez-Heredia E, Elvira M-H (2017) The Kidney, Liver, Index surgery and C reactive protein score is a predictor of treatment response in acute prosthetic joint infection. International orthopaedics. doi:10.1007/s00264-017-3670-4
- 54. Wouthuyzen-Bakker M, Sebillotte M, Lomas J, Kendrick B, Palomares EB, Murillo O, Parvizi J, Shohat N, Reinoso JC, Sánchez RE, Fernandez-Sampedro M, Senneville E, Huotari K, Allende JMB, García AB, Lora-Tamayo J, Ferrari MC, Vaznaisiene D, Yusuf E, Aboltins C, Trebse R, Salles MJ, Benito N, Vila A, Toro MDD, Kramer TS, Petersdorf S, Diaz-Brito V, Tufan ZK, Sanchez M, Arvieux C, Soriano A (2019) Timing of implant-removal in

- late acute periprosthetic joint infection: A multicenter observational study. J Infect 79 (3):199-205. doi:10.1016/j.jinf.2019.07.003
- 55. Tarity TD, Tarity TD, Ioannis G, Ioannis G, Allina N, Allina AN, Christopher WJ, Christopher WJ, Alberto C, Alberto VC, Peter KS, Peter KS (2021) Irrigation and Debridement With Implant Retention: Does Chronicity of Symptoms Matter? Journal of Arthroplasty. doi:10.1016/j.arth.2021.07.018
- 56. Chalmers BP, Kapadia M, Chiu YF, Miller AO, Henry MW, Lyman S, Carli AV (2021) Accuracy of Predictive Algorithms in Total Hip and Knee Arthroplasty Acute Periprosthetic Joint Infections Treated With Debridement, Antibiotics, and Implant Retention (DAIR). J Arthroplasty 36 (7):2558-2566. doi:10.1016/j.arth.2021.02.039
- 57. Klemt C, Laurencin S, Uzosike AC, Burns JC, Costales TG, Yeo I, Habibi Y, Kwon YM (2022) Machine learning models accurately predict recurrent infection following revision total knee arthroplasty for periprosthetic joint infection. Knee Surg Sports Traumatol Arthrosc 30 (8):2582-2590. doi:10.1007/s00167-021-06794-3
- 58. Gerritsen M, Khawar A, Scheper H, van der Wal R, Schoones J, de Boer M, Nelissen R, Pijls B (2021) Modular component exchange and outcome of DAIR for hip and knee periprosthetic joint infection: a systematic review and meta-regression analysis. Bone Jt Open 2 (10):806-812. doi:10.1302/2633-1462.210.BJO-2021-0090.R1
- 59. Barry JJ, Geary MB, Riesgo AM, Odum SM, Fehring TK, Springer BD (2021) Irrigation and Debridement with Chronic Antibiotic Suppression Is as Effective as 2-Stage Exchange in Revision Total Knee Arthroplasty with Extensive Instrumentation. The Journal of bone and joint surgery American volume 103 (1):53-63. doi:10.2106/jbjs.20.00240
- 60. McChesney GR, Al Farii H, Singleterry S, Lewis VO, Moon BS, Satcher RL, Bird JE, Lin PP (2024) Can Periprosthetic Joint Infection of Tumor Prostheses Be Controlled With Debridement, Antibiotics, and Implant Retention? Clinical orthopaedics and related research. doi:10.1097/CORR.000000000003184
- 61. Asokan A, Ibrahim MS, Thompson JW, Haddad FS (2022) Debridement, antibiotics, and implant retention in non-oncological femoral megaprosthesis infections: minimum 5 year follow-up. J Exp Orthop 9 (1):32. doi:10.1186/s40634-022-00469-9