HK 71: How long do antibiotics elute from PMMA spacers?

Fink B, Falotico GG, Tsai SW, De Meo F, Tsuchiya H, Suárez R, Tetsworth K

Response/Recommendation: Although many confounding factors influence antibiotic elution levels over time, making it difficult to compare studies regarding antibiotic delivery via PMMA spacers, the available data indicates sufficient release occurs to maintain levels above the minimum inhibitory concentration (MIC) of most bacteria for at least 6 to 12 weeks.

Level of Evidence: Low

Delegate Vote:

Rationale

Many factors influence the antibiotic elution characteristics of PMMA spacers, including the type, concentration, and combinations of antibiotics (with synergistic effects of two or more antibiotics), as well as the type and porosity of the cement itself [10,26], the geometry of the spacer, and the cement mixing technique [1-3] (Table 1). Because there are great differences in these specific details, it is difficult to directly compare studies and different outcomes may result from different preparation methods. For this review, reports were selected that gave results for elution characteristics where antibiotics were used in powdered form, at a cumulative antibiotic proportion of not more than 10%, using one or more antibiotics added to PMMA without any other additives (such as glycine, calcium phosphate, or carbonate).

Antibiotic elution from PMMA spacers has been extensively evaluated in vitro, typically involving measurements of antibiotic levels in fluid using fluorescence polarization immunoassays, or by examining zones of inhibition on culture plates. Most studies investigate devices other than spacers, such as PMMA disks as surrogates [4-7]. Since the release of antibiotics from bone cement is a surface-dependent phenomenon [8], it is valid to question the relevance of these in vitro observations for hip and knee spacers that have a different surface area and geometry. Moreover, the amount and frequency of fluid exchange around bone cement in vitro varies between studies, and although most study protocols changed the eluate daily some only changed weekly [9]. Greater amounts of fluid and more frequent exchanging will influence elution by disturbing the concentration gradient [10]. The concentration gradient between spacer surface and culture medium does not necessarily recreate in vivo conditions that faithfully model antibiotic diffusion to tissue. In addition, antibiotic and physiological differences such as local blood flow and pH may have an influence on the pharmacokinetic behavior of spacers, resulting in different antibiotic elution profiles. Moreover, the spacers are tested in vitro under ideal bacteria growth circumstances. Tryptic soy broth is an ideal growth medium and often a new aliquot of the microorganism was added on a daily basis, whereas the antibiotic amount has not been changed [11]. Therefore, the results of in vitro studies cannot be directly translated into clinical practice under in vivo conditions.

Nearly all in-vitro studies demonstrate very high peaks of antibiotic concentration and elution after 24 hours, followed by a continuous decline [11-29] (Table 2). One of the greatest limitations of several in vitro studies designed to answer the question posed by this review is the duration of the analysis period. Most studies analyzed the elution for a period of several days up to one week [13,15,19,22] (Table 2). For these short periods, sufficient release of antibiotics over the minimum inhibitory concentration (MIC) were observed [13,15,19,22]. Boelch et al [23] reported sufficient release of vancomycin and gentamicin for the whole test

period of 28 days, Slane et al [18] the same for tobramycin and vancomycin, and Galvez-Lopez et al [12] for 7 of 11 different antibiotics across the test duration of 30 days. Oungeun et al. [20] observed sufficient elution for a test period of 6 weeks for vancomycin and erythromycin, Kummer et al [9] for vancomycin, gentamicin, and daptomycin, and Liawrunrueang et al [28] for gentamicin (Table 2). Three independent studies reported substantially shorter elution periods for vancomycin compared to other antibiotics [24] [21] [16].

In an in vitro model, Stevens et al [26] simultaneously demonstrated the three important considerations of PMMA type, antibiotic synergy, and antibiotic dosage. In their study, a Palacos articulating knee spacer containing both vancomycin and tobramycin (3 g vancomycin and 3.6 g tobramycin per 40 g PMMA), eluted in excess of the MIC for most common orthopaedic pathogens for greater than 80 days. However, PMMA spacers may certainly exhibit different activity in vivo. The anatomical location, the vascular supply and perfusion of the infected area, and the protein binding capacity of each antibiotic used are some of the parameters that may actively influence spacer performance in vivo.

Due to the limitations of the in vitro studies, the more important investigations to address the issue of sufficient elution period for PMMA spacers are in vivo studies. Here, methodologically, the different studies can be separated into animal in vivo studies and human in vivo studies. The latter can be further distinguished between studies where antibiotic concentrations were measured in joint fluid drainage a few days after surgery, and those where the spacers removed during the second surgery of the two-stage protocol were analyzed for continued antibiotic elution.

Numerous factors also influence the release kinetics and elution period from PMMA in vivo. Beside the factors mentioned above, the surface roughness and total surface area of the spacer, the duration of spacer implantation, spacer geometry, spacer articulation, and the environmental circumstances are recognized as factors influencing antibiotic release from bone cement in vivo [30-32]. Moreover, articulating spacers generally exhibit abrasion from cement particles [33], potentially leading to new surfaces on the spacer from which antibiotics can elute, which may be associated with increased and prolonged antibiotic release [21,34]. In addition, an increase in the distance between the cement and the surrounding tissues results in decreased concentration of the antibiotic in the tissue [35]. The type of tissues around the spacer also affects antibiotic elution from the spacer and antibiotic diffusion into the inflamed tissues. Cancellous bone absorbs more antibiotic than cortical bone, and any hematoma (dead space) that potentially lies between the spacer and the bone or soft tissues absorbs more antibiotic than cancellous bone [35,36].

Several in vivo studies on animals, especially those evaluating selected shapes of PMMA-spacers, merit discussion here. In dogs, Adams et al [37] noted detectable concentrations of tobramycin and vancomycin from PMMA beads over a period of 28 days. Chapman and Hadley [38] observed a peak of antibiotic release on the first day, but no elution after 37 days in serum and soft tissue from antibiotic-loaded cement pellets implanted in the intramedullary canal of rabbit femora and quadriceps muscle. On the other hand, Bunetel et al [39] reported sufficient release of gentamicin up to 18 months after femoral implantation of gentamicin (0.6 and 1.2 g per 40 g PMMA) in sheep, and Chohfi et al [40] observed adequate elution for 3 months using high dose vancomycin (3 g in 40 g PMMA) impregnated cement in sheep femora. Gatin et al [41] noted sufficient release of colistin in PMMA for implantation of a silicone elastomer implant in the knee of rabbits for the whole test duration of only 21 days. The differences reported may simply be the result of various methodological differences and inherent weaknesses in the study designs.

The studies of greatest relevance are clinical investigations in humans with spacers. However, in vivo analysis of the drainage fluid concentration is limited by the time for which the drainage tubes could be left in situ, usually a period of only a few days. Anagnostakos et al. [42] confirmed sufficient antibiotic elution in the drainage fluid for 7 days when adding vancomycin to Palacos R+G-cement. As with the in vitro studies and animal in vivo studies, the analysis of the antibiotic concentration in the joint fluid drainage demonstrated a peak after 24 hours, well above the MIC of the microorganism for all tested antibiotics, followed by a much lower concentration for several days [40,42-46], typically still greater than the MIC at the end of the test period (Table 3). However, the antibiotic concentrations collected from drains are not necesssarily representative of the full pharmacokinetic properties of the spacers but instead reflect only their intra-articular surfaces. Particularly for hip spacers, this only accounts for the pharmacokinetic properties of either the spacers head alone or the spacer head in combination with a spacer cup. The antibiotic release from the spacer stem in the femoral medullary cavity cannot be determined from the joint fluid, and the measured concentrations represent only a portion of the true antibiotic elution in vivo [3]. Fink et al [34] measured the antibiotic concentration in the membrane around hip spacers 6 weeks after implantation, and noted antibiotic levels above the MIC for gentamicin, clindamycin, and vancomycin. Bertazzoni Minelli et al. [51] analyzed the antibiotic concentration in the periprosthetic tissue in two cases after explantation of hip-spacers and reported concentrations greater than those determined in other elution studies, with values obtained locally exceeding the MICs of most of the common pathogens involved in periprosthetic joint infections.

Generally, because elution for longer periods in vivo could not be measured from drainage fluid, the analysis of spacers after removal during the second-stage of two-stage revision arthroplasty seems to be more appropriate to address the question posed by this review. Joint aspiration at the time of spacer removal and analysis of the antibiotic concentration in the joint fluid revealed a sufficient concentration above the MIC for 3 months and more in most studies [47,48,50] (Table 3).

One additional feature of hip spacers, hemispacer versus articulating two-part spacers, may influence the antibiotic release in clinical use. Hsieh et al [43] reported sufficient antibiotic concentrations above the MIC in the joint fluid of 46 hip spacers with vancomycin and aztreonam after a mean period of 107 days. These spacers were articulating two-part spacers with a cemented stem head articulating on a cement cup. These observations are in concordance with the findings of Fink et al [34], who noted sufficient concentrations of gentamicin, clindamycin, and vancomycin in the tissue around the spacer after 6 weeks. These spacers were also two-part articulating spacers with a metal head articulating on cement cups. These articulations create wear, as confirmed by histological analyses, x-ray fluorescence spectroscopy, and plasma-mass spectrometry [33]. This wear exposes new surfaces, from which additional antibiotic elution can then occur. However, Masri et al [47] reported sufficient antibiotic concentrations 4 months postoperatively when using Prostalac spacers containing tobramycin. Therefore, two-part articulating spacers in the hip (as well as articulating knee spacers) may have additional advantages regarding antibiotic elution, and may also prevent acetabular bone resorption and spacer migration (as sometimes observed with hemi-spacers) [1].

The potential value of long-term antibiotic elution from spacers has been verified by studies evaluating the residual antimicrobial and pharmacokinetic properties following their explantation. Bertazzoni Minelli et al [51] and Kelm et al [49] both demonstrated sufficient elution kinetics and bacterial growth inhibition for all tested spacers, independent of their particular implantation period. Finally, Griffin et al [52] analyzed 6 spacers with different

dosages of vancomycin and tobramycin after removal between 37 and 175 days (average 85 days) and noted no adhering biofilm using scanning electron microscopy, perhaps an indirect sign of sufficient release of antibiotics for these periods.

References:

- 1. Anagnostakos K, Fink B. Antibiotic-loaded cement spacers lessons learned from the past 20 years. Expert Rev Med Div 2018; 15:231-245.
- 2. Nettrour JF, Polikandriotis JA, Bernasek TL, Gustke KA, Lyons ST. Articulating spacers for the treatment of infected total knee arthroplasty: effect of antibiotic combinations and concentrations. Orthopedics 2013;36:e19-24
- 3. Anagnostakos K, Meyer C. Antibiotic elution from hip and knee acrylic bone cement spacers: a systematic review. Biomed Res Int. 2017, 2017:4657874.
- 4. Penner MJ, Masri BA, Duncan CP: Elution characteristics of vancomycin and tobramycin combined in acrylic bone cement. J Arthroplasty. 1996, 11:939-944.
- 5. Cerretani D, Giorgi G, Fornara P, Bocchi L, Neri L, Ceffa R, Ghisellini F, Ritter MA. The in vitro elution characteristics of vancomycin combined with imipenem- cilastatin in acrylic bone-cements: a pharmacokinetic study. J Arthroplasty 2002; 17:619–626
- 6. Scott CP, Higham PA. Antibiotic bone cement for the treatment of pseudomonas aeruginosa in joint arthroplasty: comparison of tobramycin and gentamicin-loaded cements. J Biomed Mater Res 2003;64B:94–98
- 7. Streuli JC, Exner GU, Reize CL, Merkofer C, Scott CP, Zbinden R. In vitro inhibition of coagulase-negative staphylococci by vancomycin/aminoglycoside-loaded cement spacers. Infection 2006;34:81–86
- 8. Holtom PD, Warren CA, Greene NW, Bravos PD, Ressler RL, Shepherd L, McPherson EJ, Patzakis MJ. Relation of surface area to in vitro elution characteristics of vancomycin- impregnated polymethylmethacrylate spacers. Am J Orthop (Belle Mead NJ) 1998; 27:207–210.
- 9. Kummer A, Furunstrand Tafin U, Borens O. Effect of sonication on the elution of antibiotics from polymethyl methacrylate (PMMA). J Bone Joint Infect 2017;2:208-212
- 10. Greene N, Holtom PD, Warren CA, Ressler RL, Sherpherd L, McPherson EJ, Patzakis MJ. In vitro elution of tobramycin and vancomycin polymethylmethacrylate beads and spacers from Simplex and Palacos. Am J Orthop (Belle Mead NJ) 1998; 27:201-5.
- 11. Anagnostakos K, Kelm J, Regitz T, Schmitt E, Jung W. In vitro evaluation of antibiotic release from and bacteria growth inhibition by antibiotic-loaded acrylic bone cement spacers. J Biomed Mater Res Part B: Appl Biometer 2005;72B:373-378
- 12. Galvez-Lopez R, Pena-Monj A, Antelo-Lorenzo R, Guardia-Olmedo J, Moliz J, Hernandez-Quero J, Parra-Ruiz J. Elution kinetics, antimicrobial activity, and mechanical properties of 11 different antibiotic loaded acrylic bone cement. Diagn. Microbiol Infect Dis. 2014; 78:70–74.
- 13. Anagnostakos K, Kelm J, Grün S, Schmitt E, Jung W, Swoboda S. Antimicrobial properties and elution kinetics of Linezolid-loaded hip spacers in vitro. J Biomed Mater Res Part B: Applied Biomater 2008;87B.173-178.
- 14. Humez M, Domann E, Thormann KM, Fölsch C, Strathausen R, Vogt S, Alt V, Kühn KD. Dapotmycin-impregnated PMMA cement against vancomycin-resistant germs: dosage, handling, elution, mechanical stability, and effectiveness. Antibitotics 2023;12:1567
- 15. Allen B, Moore C, Seyler T, Gall K. Modulating antibiotic release from reservoirs in 3D-printed orthopedic devices to treat periprosthetic joint infection. J Orthop Res 2020;38:2239-2249

- 16. Haseeb A, Singh VA, Teh CSJ, Loke MF. Addition of ceftaroline fosamil or vancomycin to PMMA: An in vitro comparison of biomechanical properties and anti-MRSA efficacy. J Orthop Surg 2019;27:1-9
- 17. Ikeda S, Uchiyama K, Minegishi Y, Ohno K, Nakamura M, Yoshida K, Fukushima K, Takahira N, Takaso M. Double-layered antibiotic-loaded cement spacer as a novel alternative for managing periprosthetic joint infection: an in vitro study. J Orthop Surg Res 2018;13:322
- 18. Slane J, Gietman B, Squire M. Antibiotic elution from acrylic bone cement loaded with high doses of tobramycin and vancomycin. J Orthop Res 2018; 36:1078-1085.
- 19. Goltzer O, McLaren A, Overstreet D, Galli C. McLemore R. Antimicrobial release from prefabricated spacers is variable and the dose is low. Clin Orthop Relat Res 2015; 473: 2253-2261.
- 20. Oungeun P, Rojanathanes R, Pinsornsak P, Wanichwecharungruang S. Sustaining antibiotic release from a poly(methylmethacrylate) bone-spacer. ACS Omega 2019; 4:14860-14867.
- 21. Bitsch RG, Kretzer JP, Vogt S, Büchner H, Thomsen MN, Lehner B. Increased antibiotic release and equivalent biomechanics of a spacer cement without hard ratio contrast agents. Diagnostic Microbiology and Infectious Disease 2015; 83:203-209.
- 22. Andollina A, Bertoni G, Zolezzi C, Trentani F, Trentani P, Borrelli AM, Tigani D. Vancomycin and meropenem in acrylic cement: elution kinetics of in vitro bactericidal action. Chri Organi Mov 2008; 91:151-158.
- 23. Boelch, SP, Rueckl K, Fuchs C, Jordan M, Knauer M, Steinert A, Rudert M, Luedemann M. Comparison of Elution Characteristics and Compressive Strength of Biantibiotic-Loaded PMMA Bone Cement for Spacers: Copal(R) Spacem with Gentamicin and Vancomycin versus Palacos (R) R+G with Vancomycin. Biomed Res Int 2018, 2018, 4323518.
- 24. Greene N, Holtom PD, Warren CA, Ressler RL, Sherpherd L, McPherson EJ, Patzakis MJ. In vitro elution of tobramycin and vancomycin polymethylmethacrylate beads and spacers from Simplex and Palacos. Am J Orthop (Belle Mead NJ) 1998; 27:201-5.
- 25. Shiramizu K, Lovric V, Leung A, Walsh WR. How do porosity-inducing techniques affect antibiotic elution from bone cement? An in vitro comparison between hydrogen peroxide and a mechanical mixer. J Orthop Traumatol Off J Ital Soc Orthop Traumatol. 2008; 9:17–22.
- 26. Stevens CM, Tetsworth KD, Calhoun JH, Mader JT. An articulated antibiotic spacer used for infected total knee arthroplasty: a comparative in vitro elution study of Simplex and Palacos bone cements. J.Orthop Res 2005, 23: 27–33.
- 27. Moore K, Wilson-van Os R, Dusane DH, Brooks JR, Delury C, Aiken SS, Laycok PA, Sullian AC, Granger JF, Dipane MV, McPherson EJ, Stoodley P. Elution kinetics from antibiotic-loaded calcium sulfate beads, antibiotic-loaded polymethacrylate spacers, and a powdered antibiotic bolus for surgical site infections in a novel in vitro draining knee model. Antibiotics 2021;10:270
- 28. Liawrungrueang W, Ungphaiboon S, Jitsurong A, Ingviya N, Tangtrakulwanich B, Yuenyongviwat V. In vitro elution characteristics of gentamicin-impregnated polymethylmethacrylate: premixed with a second powder vs. liquid lyophilization. BMC Musculoskeletal Disorders 2021; 22:5
- 29. Salih S, Pskins A, Nichol T, Smith T, Hamer A. The cement spacer with multiple indentations. Increasing antibiotic elution using a cement spacer "teabag". J Bone Joint Surg 2015;97-B:1519-1524.
- 30. van de Belt J, Neut D, Uges DR, Schenk W, van Horn JR, van der Mai HC, Busscher HJ. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release. Biomaterials 2000; 21:1981-1987.

- 31. Anagnostakos K, Kelm J. Enhancement of antibiotic elution from acrylic bone cement. J Biomed Mater Res B Appl Biomater 2009; 90:467-475.
- 32. Masri BA, Duncan CP, Beauchamp CP, Paris NJ, Arntorp J. Effect of varying surface patterns on antibiotic elution from antibiotic-loaded bone cement. J. Arthroplasty 1995, 10, 453–459.
- 33. Fink B, Rechtenbach A, Büchner H, Vogt S, Hahn M. Articulating spacers used in two-stage revision of infected hip and knee prostheses abrade with time. Clin Orthop Relat Res 2011; 469:1095-1102.
- 34. Fink B, Vogt S, Reinsch M, Büchner H. Sufficient release of antibiotic by a spacer 6 weeks after implantation in two-stage revision of infected hip prostheses. Clin Orthop Relat Res 2011;469:3141-3147.
- 35. Walenkamp GHIM: Antibiotic loaded cement: from research to clinical evidence. Infection and Local Treatment in Orthopedic Surgery. Meani E, Romanò C, Crosby L, Hofmann G, Calonego G (ed): Springer, Berlin, Heidelberg; 2007. 170-175.
- 36. van Vugt TA, Arts JJ, Geurts JA. Antibiotic-loaded polymethylmethacrylate beads and spacers in treatment of orthopedic infections and the role of biofilm formation. Front Microbiol. 2019, 10:1626. 10.3389/fmicb.2019.01626
- 37. Adams K, Coud L, Cierny G, Calhoun J, Mader JT. In vitro and in vivo evaluation of antibiotic diffusion from antibiotic-impregnated polymethylmethacrylate beads. Clin Orthop Relat Res 1992; 278:244-252.
- 38. Chapman MW, Hadley K, The effect of polymethylmethacrylate and antibiotic combinations on bacterial viability. An in vitro and preliminary in vivo study. J Bone Joint Surg 1976;58-A:76-81
- 39. Bunetel L, Segui A, Langlais F, Cornier M. Osseous concentration of gentamicin after implantation of acrylic bone cement in sheep femora. Eur J Drug Metab Pharmacokinet 1994; 19:99-105.
- 40. Chohfi M, Langlais F, Fourastier J, Minet J, Thomazeau H, Cormier M. Pharmacokinetics, uses and limitations of vancomycin-loaded bone cement. Inter Orthop 1998;22:171-177
- 41. Gatin L, Saleh Mghir A, Mouton W, Laurent F, Ghout I, Rioux-Leclercq N, Tattevin P, Verdier MC, Cremieux AC. Colistin-containing cement spacer for treatment of experimental carbapenemase-producing Klebsiella pneumoniae prosthetic joint infection. Int J Antimicrob Agents 2019:54:456-462
- 42. Anagnostakos K, Wilmes P, Schmitt E, Kelm J. Elution of gentamicin and vancomycin from polymethylmethacrylate beads and hip spacers in vivo. Acta Orthop 2009, 80, 193–197.
- 43. Hsieh PH, Chang YH, Chen SH, Ueng SW, Shih CH: High concentration and bioactivity of vancomycin and aztreonam eluted from Simplex cement spacers in two-stage revision of infected hip implants: a study of 46 patients at an average follow-up of 107 days. J Orthop Res. 2006, 24:1615-1621.
- 44. Regis D, Sandri A, Samaila E, Benini A, Bondi M, Magnan B. Release of gentamicin and vancomycin form preformed spacers in infected total hip arthroplasties: Measurement of concentrations and inhibitory activity in patients' drainage fluid and serum. Scientif World J 2013;ID 752184
- 45. Isiklar ZU, Demirörs D, Akpinar S, Tandogan RN, Alparsian M. Two-stage treatment of chronic staphylococcal orthopaedic implant-related infections using vancomycin impregnated PMMA spacer and rifampicin containing antibiotic protocol. Bulletin Hosp Joint Dis 1999;58:79-85
- 46. Balato G, Ascione T, Rosa D, Pagliano P, Solarino G, Moretti B, Mariconda M. Release of gentamicin from cement spacers in two-stage procedures for hip and knee prosthetic

- infection: An in vivo pharmacokinetic study with clinical follow-up. J Biol Regulat Hemeostat Agent 2015; 29:63-72.
- 47. Masri BA, Duncan CP, Beauchamp CP. Long-term elution of antibiotics from bone-cement. An in-vivo study using the prosthesis of antibiotic-loaded acrylic-cement (PROSTALAC). J Arthroplasty 1998; 13 (3): 331-8.
- 48. Mutimer J, Gillespie G, Lovering AM, Porteous AJ. Measurements of in vivo intraarticular gentamicin levels from antibiotic loaded articulating spacers in revision total knee replacement. Knee 2009;16:39-41
- 49. Kelm J, Regitz T, Schmitt E, Jung W, Anagnostakos K. In vivo and in vitro studies of antibiotic release from and bacterial growth inhibition by antibiotic-impregnated polymethylmethacrylate hip spacers. Antimicrob Agents Chemother 2006; 50:332-335
- 50. Hsieh PH, Huang KC, Tai CL. Liquid gentamicin in bone cement spacers: In vivo antibiotic release and systemic safety in two-stage revision of infected hip arthroplasty. J Trauma 2009; 66:804-808.
- 51. Bertazzoni Minelli E, Benini A, Magnan B, Bertazolli P. Release of gentamicin and vancomycin from temporary human hip spacers in two-stage revision of infected arthroplasty. J Antimicrob Chemother 2004;53:329-334
- 52. Griffin JW, Guillot S, Redick JA, Browne JA. Removed antibiotic-impregnated cement spacers in two-stage revision joint arthroplasty do not show biofilm formation in vivo. J Arthroplasty 2012; 27:1769-1799